Magnets cross-talk and impact on the lattice for ESRF-EBS

Gaël LE BEC
N. Carmignani, J. Chavanne, S. Liuzzo, S White

Low Emittance Ring Workshop – LER2020
INFN-LNF, Frascati, Italy, 26-30 October 2020
Outline

1. Introduction
2. Evidences for quad cross-talks
3. Models
4. Measurements
5. Impact on the lattice
6. Conclusion
1. Introduction
The Extremely Brilliant Source

- New generation 6 GeV synchrotron light source
- Low emittance storage ring
- Restarted end 2019
- User mode since end of August
THE EBS LIGHT SOURCE

The Extremely Brilliant Source

- New storage ring
- 130 pm·rad horizontal emittance
- 10 pm·rad vertical emittance
- 6 GeV electrons
- 200 mA current
- Same buildings and infrastructures

How to decrease the emittance?

- More dipoles (7 per cell)
- Strong quadrupoles between dipoles
Main magnets

Dipoles

128 PM magnets

0.17 T < \(B \) < 0.67 T

Dipole-quads (DQs)

96 magnets

0.39 T < \(B \) < 0.57 T

31 T/m < \(G \) < 37 T/m
THE EBS MAGNET SYSTEM

Main magnets

Quads
- 521 magnets
- 50 T/m < B < 90 T/m
- 25 mm < φ < 33 mm

Sextupoles
- 192 magnets
- \(S = 1700 \text{T/m}^2 \)
- \(\phi = 38.4 \text{mm} \)

Octupoles
- 64 magnets
- \(O = 57 \text{kT/m}^3 \)
- \(\phi = 38.2 \text{mm} \)
Other magnets

Correctors

96 magnets
Dipoles + skew quad (+sextupole)

Injection
Specific magnets
SBM sources
Short PM dipoles
Some specificities of the EBS magnets

PM dipoles

No trimming coil (tunning in lab)

High gradient quads

Saturated at nominal current

Combined magnets

Dipole-quads
Sextupoles + dipole correctors + skew quads
Combined correctors + skew quads
A very compact storage ring!
Short distances between magnets

- PM dipole: 47 mm
- Sextupole yoke: 75 mm
- Octupole yoke: 60 mm
THE EBS MAGNET SYSTEM

A very compact storage ring!
Short distances between magnets

Coil to coil distance < 1 cm

PM dipole
Sextupole yoke
Octupole yoke
Quadrupole yoke
Quadrupole yoke

75 mm
60 mm
All ingredients for strong cross-talks

Between magnets
- Short distances
- Saturation
- Cross-talk induced PM dipole error pre-corrected in lab

Between channels of combined magnets
- Not in the scope of this talk

Dipole to quad crosstalk
[LER2013, Oxford]
2. Evidences for quad cross-talks
28th November 2019

First turns

Tune measurements from turn-by-turn data

Large discrepancies between measurements and model

\[\Delta \nu_X = -0.4 \]
\[\Delta \nu_Y = -1.4 \]
EVIDENCES FOR QUAD CROSS-TALK

Mid-December 2019

Quadrupole calibrations

- Excitation curves for quad families
- Individual calibration coefficients for quadrupoles (close to 1)
- Bugs found, e.g. divisions instead of multiplications…
- Two sets of measurements available (by suppliers and at ESRF)
Mid-December 2019

Quadrupole calibration errors

Calibration coefficients for one magnet family
Mid-December 2019

Quadrupole calibration errors

- Excitation curves for quad families
- Individual calibration coefficients for quadrupoles (close to 1)
- Bugs found, e.g. divisions instead of multiplications…
- Two sets of measurements available (by suppliers and at ESRF)

Calibration uncertainties

- Estimated to $U = 3.2 \times 10^{-4}$
 (supplier vs ESRF, accounting for benches, power supplies, etc.)

Much larger errors expected from lattice measurements!
EVIDENCES FOR QUAD CROSS-TALK

Mid-December 2019

Quadrupole calibration errors

• Excitation curves for quad families
• Individual calibration coefficients for quadrupoles (close to 1)
• Bugs found, e.g. divisions instead of multiplications…
• Two sets of measurements available (by suppliers and at ESRF)

Calibration uncertainties

• Estimated to \(U = 3.2 \times 10^{-4} \) (supplier vs ESRF, accounting for benches, power supplies, etc.)

Much larger errors expected from lattice measurements!

Can cross-talks generate large quadrupole errors?
Preliminary measurements in 2017

- Dipole to quadrupole cross-talk
- Needed for PM dipole tuning
- Focused on dipole errors due to quads
- Impact on gradient not investigated in details at that time

Integrated dipole vs dipole-to-quad distance
Preliminary measurements in 2017

- Dipole to quadrupole cross-talk
- Needed for PM dipole tuning
- Focused on dipole errors due to quads
- Impact on gradient not investigated in details at that time

A later analysis of the data shown a 1% gradient error at nominal distance
3. Models
Magnetic simulations

- Non-linear 3D models
- Strong dependence in current (magnets are saturated)
- Radia software used

Needs a lot of CPU time on the ESRF cluster!

~ 1 CPU hour / current settings

Radia magnetic model of a dipole and a quadrupole
MODELS

About the Radia code

- Magnetostatic simulation code
- Initially developed for PM insertion device simulations
- It does not rely on FEM, but on a boundary integral approach, i.e. it computes the magnetization of small elements using currents and magnetizations of other elements

This is convenient for cross-talk problems, as it allows to separate easily the contribution of the different magnets

[https://github.com/ochubar/Radia]
Dipole to quadrupole cross-talk

- 0.8 to 0.9% decrease of integrated gradient (depending on magnets)
- Effect localized on the dipole edge
- Almost no change in the quad
- Can be modelled by a thin lens with opposite polarity

Gradient distribution in a dipole and a quadrupole
Sextupole to quadrupole cross-talk

- 0.3 % decrease of integrated gradient
- Effect localized on the sextupole edge

Gradient distribution in a sextupole and a quadrupole
Sextupole to quadrupole cross-talk

<table>
<thead>
<tr>
<th></th>
<th>QF4A</th>
<th>SF2-ext</th>
<th>SF2</th>
<th>SF2-ext</th>
<th>QF4B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient error</td>
<td>−0.03</td>
<td>−0.27</td>
<td>−0.27</td>
<td>−0.03</td>
<td>%</td>
</tr>
</tbody>
</table>
Sextupole to quadrupole cross-talk

Integrated gradient error from sextupole edge

Integrated gradient error from quadrupole

(All errors in (%) of the integrated gradient without sextupole)
Octupole to quadrupole cross-talk

- 1.7 % increase of integrated gradient
- Gradient error all along the octupole

Errors distribution and sign are magnet dependent
Octupole to quadrupole cross-talk

Integrated gradient error from octupole

Integrated gradient error from quadrupole

(All errors in (%) of the integrated gradient without octupole)
4. Measurements
MEASUREMENTS

Magnetic measurements

- Integrated gradient
- Stretched wire method used
- Crosstalk with dipole, sextupoles and octupoles measured

Main purpose
To check the simulations in a few sample configurations

Octupole and quadrupole installed on a measurement bench
PM Dipole / quadrupole

Measured in 2017 (focused on field)

Discrepency:

\[
\frac{\text{Sim} - \text{Meas}}{\text{Meas}} < 7 \times 10^{-4}
\]

(Magnet positioning could have been improved)

Quadrupole gradient vs distance between quad and PM dipole (nominal value: 47 mm, first point)
MEASUREMENTS

Sextupole / quadrupole

Simulation

\[\Delta G / G = -0.30 \% \]

Measurements

\[\Delta G / G = -0.306 \% \]

(Quad at 85 A, sextupole at 0 A, distance 75 ± 0.5 mm, \(UG \approx 10^{-4} \))
Octupole / quadrupole

Simulation (quad current: 85 A)
\[\frac{\Delta G}{G} = 1.78\% \]

Measurements
\[\frac{\Delta G}{G} = 1.77\% \]

Simulation (quad current: 100 A)
\[\frac{\Delta G}{G} = 1.69\% \]

Measurements
\[\frac{\Delta G}{G} = 1.76\% \]

(Octupole at 0 A, distance 60 \(\pm \) 0.5 mm, \(UG \approx 10^{-4} \))
5. Impact on lattice
Optics with cross talk quadrupole fields

- Cross-talks (thin elements) introduce $\Delta \beta_X / \beta_X \approx 10\%$ and $\Delta \beta_X / \beta_X \approx 20\%$
- Recovered after matching
- Changes in quadrupole setting points up to 1.7\%
DA and off-energy

Ideal lattice model
DA : -8.7 +/- 0.3 mm
T.L.T. : 19.6 +/- 0.7 h
I.E. : 85 +/- 5 %

Ideal lattice model
+ cross talks
DA : -8.3 +/- 0.4 mm
T.L.T. : 19.7 +/- 1.4 h
I.E. : 88 +/- 7 %
Horizontal dispersion measurements

09 Dec 2019, first measurement

- calibrations, cross-talks, steering with more singular values than foreseen, \textit{BBA},
- NO quadrupole correction (except tunes)

30 Jan 2020, “uncorrected”
6. Conclusion
Causes of cross-talks

- Short distances between magnets

Effect on the lattice

- Similar to magnet calibration issues
- Large discrepancies between model and real lattice at the restart
- Recovered by inserting cross-talk effects in the model
- No change in lattice performances at the end
Simulations

- 3D magnet models at several currents
- Fine localization of the errors (at magnet edges or not)
- Used to update the lattice model

Magnetic measurements

- Stretched-wire measurements of the integrated field
- Good agreement with simulations