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1. Introduction

A The FCC-ee is a very challenging machine, since it aims at accommodating 4
different energies, the Z-, W-, H- and T-pole, running at 45.6, 80, 120, and
175/182.5 GeV, respectively, with rather stringent time schedule driven by
integrated luminosity at each energy;

A(It has become immediately evident that, vacuum-wise, the Z-pole is the most
challenging one, with its B-factory-like currents of almost 1.4 A, compared to the
10 mA or so that LEP stored at the time at the same energy;

A FCC-ee is conceived as a very low-emittance, high-luminosity machine, and
therefore all impedance issues and related beam instabilities must be
avoided: this requirement calls for a very careful design of its vacuum system,
with very low-loss components, such as flanges, synchrotron radiation (SR)
absorbers, tapers, resistive wall (NEG-coating);

A We have tried our best to take advantage of the lessons learned in the last 2
decades on B-factories (SLAC, KEK, Cornell) and the legacy studies on LEP,
trying to combine different features, design, and material choices into a
reasonable solution applicable to a twin ~100 km ring (plus ~100 km booster!);

A This talk discusses the status report which has led to the CDR, and the proposed
needed R&D and prototyping, should further funding be made available.
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2. FCC-ee parameter list (as per CDR)

A The list of machine parameters for the Z- and T-pole machines is shown here
below (https://tlep.web.cern.ch/content/machine-parameters); Highlighted in red

are those which may affect vacuum:

Table 2.2: Comparison of synchrotron radiation between FCC-ee, LEP2 [159], and PEP-II [159] at their

beam energy [GeV] s- .25. 5: i 3 .1825 .: highest energies.

Sl opon okl il FCC-cc LEP2 PEP-II (high cnergy ring)
momentum compaction [10°] 1.48 0.73 Highest beam energy [GeV] | 1825 1046 9.0

horizontal emittance [nm] 0.27 1.45 Bending radius [km] 10.760  2.584 0.167

vertical emittance [pm] 1.0 2.7 Synchrotron radiation loss per turn ~ [GeV] ‘" 003 ., 407 0.0034

horizontal beta* [m] 0.15 1 Critical energy in the arc dipole [MeV] . 1.06. = 0.83 0.0082

vertical beta* [mm] 0.8 2 Beam current / species [mA] 55°¢ 1960

length of interaction area [mm] 0.42 1.99 Radiation power per beam [MW1] 50 V122 6.8

T D) (0.569, 0.61, 0.0125) | (0.553, 0.59, 0.0350) Total radiation power per arc length  [kW/m] 1.2 \= 1.1 5.5

longitudinal damping time [ms] e :1.4. - o 0 W o e e e e o
SRenergy ous /1 [GeH) ra20%.us vefflar | Actually, e,;(182.5 GeV, 10,760 m) = 1.253 MeV

total RF voltage [GV] 0.10 10.93 e o T e e = Ty 2 e ) e .
RF acceptance [%] 1.9 4.9

energy acceptance [%)] 1.3 2.5

energy spread (SR / BS) [%) 0.038/0.132 0.15/0.20 @) b - )

bunch length (SR / BS) [mm] 3.5/12.1 25/3.3

Piwinski angle (SR / BS) 8.2/285 1.39/1.60

bunch intensity [107"] 1.7 28 ®) —D-= D

no. of bunches / beam # .19{249. S .39. -

il :.13.99.' :.IiII:

Juminosity [10% cm2s-] 230 15 © m

beam-beam parameter (x /y) (10-01- l- D-.1-33 050.94;20..1?0

Rarinosity lifetime [min] :. .7.0. .: :- amm -: Figure 2.4: Three magnet arrangements around a quadrupole. D: twin-aperture dipole, Q: twin-aperture
time between injections [sec] 122 32 quadrupole. S: single-aperture sextupole. (A) no sextupole, (B) single aperture, singlet sextupole only for
allowable asymmetry [%] +5 =3 60°/60°, (C) single aperture, doublet sextupole for either 60°/60° or 90° /90°. In case (C) for 60°/60°,
required lifetime by BS [min] 29 10 only the part of the doublet next to the quadrupole is powered. As a result, three dipole lengths are
actual lifetime by BS (“weak”) [min] > 200 25 needed to maintain a constant distance between quadrupoles.



https://tlep.web.cern.ch/content/machine-parameters

3. SR spectra, photon flux and power densities

A FCC-ee will be a very powerful and intense source of highly-collimated
synchrotron radiation (SR);

A Its critical energy, photon flux and power are given by the well-known formulae:

_ 22183 (GeV)
- r(m)

E

C

F(ph/s) =8.08Q0" AE(GeV) O (mA) (k. (ke and kp account for photons with energy e>4 eV)

) ..
P(W) = 884605 (Ge\(’)c)’(m@ d, A limited by design at 50 MW/beam
r{m

E(GeV) E,(keV) I(mA)  F(ph/s) P (MW)

45.6 19.57 1390 | 4.85:102 | ~50
80 105.69 147 9.30-102t | ~50
120 356.63 29 279102 | ~50
182.5 1254.5 5.4 7.88:100 | ~50 | & g=357,143: 1/g=2.8 nrad

Vertical footprint at 30 m ~

0.6 mm!
A Very high power density!



SR flux (left) and power (right) spectra:

FCC-ce: SR Photon Spectra
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- For photon energies above 100~200 keV creation of Compton photons becomes
dominant: for the ttbar machine 50% of the photon have energy above 100 keV!

- Supra-linear increase of the photon flux inside of the vacuum chamber A increased
photon-induced outgassing (see bonus slides)




4. Vacuum Specifications
A Sufficiently long beam-gas scattering lifetimes, longer than the luminosity ones:

Z (30k bunches) Z (90k bunches) W H T

Luminosity lifetime [min] 94 185 90 67 57/44

A Short vacuum conditioning time: we want to reach quickly the nominal
luminosity with low pressure background, low beam losses, reduced activation of
machine components and tunnel, etceé

A E-cloud- and ion-trapping-free e+ and e- rings: we want to avoid beam
instabilities and beam blow-up due to excessive e-cloud, beam-ionization (then
low pressure requirement), fast-ion instabilities, etcé

A Optimized vacuum system, with easy to manufacture vacuum chambers (2x100

km + ful | ener gy i nj eale masnprobuctiorsneeelad)e i n
A Efficient and cost-effective pumping system: agai n,-ring100km a t
machine, we cano6t i1 nstal/]l ~ 1 p-faactopes;m as

A Use existing and proven technologies as much as possible;
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5. Vacuum chamber geometries: different options and SR ray-
tracing

A Having hosted the only lepton accelerator running up to ~100 GeV beam
energies, it has become natural at CERN to look for the applicability of the LEP
vacuum chamber geometry and pumping system concepts;

A LEP was a large, single chamber twin beam, with pretzeled orbits and relatively
low currents. The only real problems due to the SR-induced heating came from
areas immediately downstream of the polarization wigglers (many leaks!); Its
beam chamber cross-section was elliptical 131x70 mm? (HxV);

A(The FCC-ee is a very low emittance machine, and detailed studies have proven
that an elliptical chamber would excite quadrupolar moments which would
destabilize the stored bunches, and should therefore be avoided; A cross-

\

\Section as close as possible to that of a circle should be preferred; y
A We have therefore abandoned the first proposal (see FCC Week 2016 and
earlier), which called for a verticail

shaped SR absorbers;

A( We have chosen a SuperKEKB-type of chamber, which has a round part with two )
s mal | Awi ngl et so |1 n SupérkEKB duch a ehantbér hastean | o
one side a distributed pumping based on multiple, stacked NEG strips, installed

\behind a slotted wall (next slide); y
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Special bakeable low-loss
copper seal
(Matsumoto-Ohtsuka-type)

3x NEG strips, with integrated
heater for NEG activation

This cross section can be

N _apa = ey ol extruded out of aluminium (like
= o for the 4 GeV low-energy e*
— & ring), or made welding different

pieces out of copper (like for
the 7 GeV high-energy e ring);

A For FCC-ee running at the ttbar-pole, tha
SR critical energy is around 1.25 MeV,

A making an aluminium chamber not the
JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A beSt ChOice in termS Of radiation |eakage

Design and construction of the SuperKEKB vacuum system (see bonus slides and F. C e r u preéséentatson, FCC

Yusuke Suetsugu, Ken-ichi Kanazawa, Kyo Shibata, Takuya Ishibashi, Hiromi Hisamatsu et al.

Week conferences);

Citation: J. Vac. Sci. Technol. A 30, 031602 (2012); doi: 10.1116/1.3696683

A copper chamber would be preferable:




A The e+ ring, especially at the
Z-pole with many short
bunches and 4 ns spacing, is
expected to suffer from e-

._ cloud;

A E-cloud mitigation MUST be
part of the design;

A One possibility is to use
a grooved surfaces, like
done at SuperKEKB;

A Another possibility is to use

| thin-film coatings having a

: 2 220 mm - below-threshold secondary-

electron yield (SEY);

A SuperKEKB has opted for TiN instead of NEG-coating, after having tested both on a

test section of KEK-B(see fiContinuing study on the phot ol €
coating and NEG (Tii Zri V) coating under Il ntense photon irradi ¢

k2006) 3991 409),

Based on the very positive experi elighd:e\c
sources, we firstly proposed to use NEG-coating. Recent experimental results
(@CERN and Y. Tanimoto, Photon Factory KEK) have shown that a thin (150 nm)
NEG-coating would not loose its vacuum properties after 10 saturation-activation
scycles. See Y. T a n i _medntabaiteon FCC Week 20109.
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Lumped SR absorbers, 300 mm long (~ 6 m spacing on average, in the arcs)

Vacuum chamber cross section:
70mmIDwi t howd nign ettlse pl ane
of the orbit (SUPERKEKB-like);

Pumping slots

S

/

High-Z
shielding
around absorber Water-cooled SR

absorber

~N

KA Localization of Compton-scattered background at lumped SR absorbers (as per
FLUKA simulations, F. Cerruti et al.);

A Localization of outgassing load and efficient pumping (as per extensive MC
simulations);




(CAD models M Gil Costa, CERN)

A( CAD models of the common-yoke dipole and quadrupole magnets (1m-long N
prototypes, A. Milanese, CERN), and SUPERKEKB-type vacuum chambers with
integrated SR absorbers and pumping domes; NEXTorr pumps (SAES Getters, Milan
Italy) are installed at each pumping dome;




(CAD models M Gil Costa, CERN)

NEXTorr pump ‘Po
(integrated ion-NEG) ¥ r.

1m-long mock-ups with pumping domes
(3D printing technol., C. Duclos, CERN)




External beam

Internal beam

1m-long dipole prototype

1m-long quadrupole prototype

FCC-ee: Integration view of the vacuum chambers with absorbers,
pumping plenums with NEXTorr pump, within one common-yoke

guadrupole
(courtesy of Fani Valchkova-Georgieva, CERN-EN-ACE)
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A FCC-ee main arc dipole and quadrupole
cross-section(see A. Mil aneseeds _
War m magnets desi gpn;o, FCC'.':_

A A SuperKEKB-type cross-section has been |
drawn to scale: it has a 70 mm ID circular |

part with two 25x10 mm2 (HxV) A wiongl e t(s T
on the plane of the orbit (int. dimensions);

A The intense SR fans (<) generated by
the stored beams are intercepted inside
the winglet on the external side of the ring;

\

A At SuperKEKB the whole length of the A For the quadrupole design,
winglet is irradiated by SR, and therefore it though, the coils are in a lower-
needs a cooling channel along it (see irradiation area/configuration;
previous slide); A These considerations apply

A 1t becomes evident that the internal mainly to the W-, H-, and T-pole
beamdés SR fan irradiat &achipesastheZhasa
corresponding dipole coil, while the critical energy of only ~20 keV,
external one irradiates the tunnel well below the Compton edge;

mponents;



,&ﬂn order to limit the amount of Compton \
radiation leakage, and the possible

radi ation damage and
activation, we propose to install at
appropriate locations a number of lumped
SR absorbers, in such a way that they cover
Qhe whole horizontal angle of the SR fan; /
A High-Z shielding could be added on the
external part of the absorber;

A For the selected radius of curvature of A FOr geometric impedance reasons, the
the orbit in the dipoles (10.76 km), absorber should have a tapered shape, and

and the 70 mm ID of the chamber, the do not protrude into the circular part of the

distance between the source point of A \(/)actj#m cham_ioer;_ et : lot
the SR and the first collision with the N e Opposite Wingiet, bUMDINg SIS

: could be machined, to allow molecules
absorbers or the 70 mm ID wall is of
the order of ~36 m- generated on the absorber (and elsewhere

- . . as well) to reach lumped pumps installed on
J This distance, combined with the . . .
C T a pumping dome (see previous slides);
natural vertical divergence of the SR pLUmpng ( P )
fan, makes such that only a fraction A The absorbers have a V-shaped surface

of 1% of the photons miss the 10 where the primary SR photons impinge at
mm-high absorber and land on the a small angle thus reducing the SR power

c h a mb ewadl (sse next slides): density (which for the T-pole is relevant);




A & SR photon flux density for the
no-photon scattering case (zero
reflectivity);

A Less than 0.8% of the primary
photons miss the 5 absorbers
and land on the vacuum
chamber;

A Note: this model shows an older
version of the lattice, with 2x
10m-l ong di pol es
affect the results/conclusions);

OLD 50m HALF-CELL LATTICE

A SR photon flux density for the
realistic photon scattering case
(angle&material dependent) A

A About 4.6% of the primary
photons are scattered and land
on the vacuum chamber,

A These scattered photons can

generate photoelectrons which

s eedae-clhudeffect;

Total Power: 17.6 KW/25m A




A A~ 140 m arc section, 5 dipoles + 5 quads, has been modelled with SYNRAD+ and
then used as input for FLUKA studies (NEW LATTICE)

A Beam 1 and Beam 2, for the Z-pole, generating a total of 171 kW of SR

AB2 has 25 absorbers along the external
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A A~ 140 m arc section, 5 dipoles + 5 quads, has been modelled with SYNRAD+ and
then used as input for FLUKA studies
A No photon scattering
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A A~ 140 m arc section, 5 dipoles + 5 quads, has been modelled with SYNRAD+ and
then used as input for FLUKA studies

A With photon scattering: ~ uniform bath of photons for B2 (no absorbers); localized
photon reflections off the absorbers for B1
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A Collaboration with FLUKA team towards assessing the advantage of having localized
SR absorbers rather than a continuous SR strip along the chamber

A A~ 140 m arc section, 5 dipoles + 5 quads, has been modelled with SYNRAD+ and
then used as input for FLUKA studies (courtesy B. Humann, CERN-EN-STI-BMI)

AWork under wayé

SR Studies in the FCCee arc in FLUKA

Periodic Cell: Magnets:

.

140.824m embedded in the current FCCee tunnel design

5 dipoles (MB): 2x21.4m, 3x24.6m; 56.6mT at 182.5GeV
3 quadrupoles (MQ): 2.9m; 10T/m maximum gradient
4 sextupoles (MS): 1.4m

30cm beam separation * So far working only with analytical magnetic fields
Prototypes for MB and MB already produced
25 absorbers in dipoles and quadrupoles (designed & placed by R. «  MS still in design phase
Kersevan)
Absorber: On the outer wall of the vacuum chamber

Goal of simulation:

Deposited energy and power on magnets, tunnel environment and
absorbers at 182.5GeV

Investigating integrated dose (damage to insulator material on the
coils) and fluence

For a complete study both beams have to be studied

* Angled surfaces for better distribution of
power due to smaller impacting angle

* Copper—Chromium — Zirconium alloy

*  30cm length

* 5-6m between the absorbers

Water cooled




6. Pumping system options: pressure profiles

A SuperKEKB, like LEP before it, implements a distributed pumping system based on
stacked strips of St707 NEG (see ref. cited above);

A Unfortunately our magnet cross-section is not compatible with a 220 mm horizontal
width (internal, plus chamber wall thickness, and eventually installation tolerances):
that 6s why we have smaller Awingletso,
each;

A In these 25 mm one would not be able to install the regular 30 mm-wide St707
strips. SAES has produced recently an integrated, high-c apaci ty (AZAO
distributed pump, giving approximately 800 I/s/m pumping speed for H,;

K We have therefore explored the effect on the pressure profiles generated by\
different pumping configurations, taking into account the presence of the
guad/dipole yokes, and coils, which would limit space for the installation of a

\_Pumping plenum; y
A Out of the 4-5 lumped absorbers every 25 m (see previous slides), we have
calculated the pressure profile for COwhen 1, 2, or 3 lumped pumps are

installed in the straight part of the lattice (short dipole-dipole interconnect,
and quadrupole drift area);

A We have also calculated the pressure when a distributed pumps is installed
along the 2 dipoles;
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A The specific conductance of our 70 mm ID chamber with 25mm-wide winglets has
been calculated to be 46.6 (I-m/s), for CO at 20 °C;

A For a long, constant cross-section chamber (conductance Cspec) With equally-spaced
pumps (distance L) of the same nominal pumping speed S, the effective pumping
speed S is given by a simple formula shown in the figure:

FCC-ee: Effective Pumping Speed vs Pump Spacing \
LEPO s? 31>

Valid for 70 mm ID with winglets Ref .
( SuperkEKB -type ) (HxV) elliptical chamber:

Cepee = 46.6 I"m/s
Cqpec=100 (I:m/s)

//

100

//

LEP vacuum chamber section

Seq (I/5)
1000

Seff (1/5)

200

100 -1
50 Sefr (Seq: L. Copec) = (L/12/Cypec + 1/Seq)

10

uum chamber section made f{)truddl minium profile with the
channel, three cooling water ducts (2) and surrounded by 3 to 8 mm
ield (3). The NEGp mp(d)!sh usedln separate pump channel

e beam channel by a row of longitudinal slots (5).

T - 100 \ /
Pumps Spacing, L (m)

[N

What this means is that the relatively small C,.. translates into the need for many
lumped pumps installed at a short distance L from each other, which increases the
complexity, reliability, and cost of the vacuum chamber (more machining of the

extruded part s, more pumping pl enums,




A In order to obtain the pressure profiles (via Test-Particle Monte Carlo code Molflow+), we need to
compute the SR-induced outgassing load;

A Sometimes a simple 2D geometric ray-tracing with a CAD system is made, essentially using a
projection of the vacuum chambers in the plane of the orbit, and assuming no photon scattering;

A [Under this hypothesis, the gas load vs beam orbit coordinate z(m) for the Z-pole machine would be

like this: : . -
FCC-ee: SR-Induced Outgassing Load, no reflectivity, for 0.1 s, 1h, 10 h, 1 day conditioning
Synchr Computed
1s i i : : at constant
nominal
10 .
—_ current:
= 1390 mA
3 o “‘*m-.. .:
= i Qtot (mbar - 1/s):
|3 8 251E4 01
0 e ke
v | g g5 7.80E-6 1h
o™ . :3 341E-6 10h
" / o 291E-6 1d
10
” 0 5 10 15 20 25
1S ]
R a0 V4 ( m )

ifleve outgassing fispikeso corresponding to the

é
A The integrated gas loads are shown in the table; the first one is proportional to the instantaneous
absorbed photon flux distribution;




In reality, the copper absorbers and the copper vacuum chamber will scatter most or the SR photons;

A Arealistic scattering model, with full dependence on the photon energy, angle of incidence,
material, and surface roughness has been implemented recently (see M. Ady, PhD thesis, EPFL-
CERN, 2016, AMonte Carlo simulations of wultra hig
acc el e rhtot/as.cerd.ch/record/21576662In=fr)

Computed at constant

2.51E-4 0.1s

3.18E-5 1h

7 T T .
! . nominal current: 1390
L R B Y
| |
Y S A mA
c‘g A ,,,,,,,,,,,‘&1‘ S i ,,,,,,,,,,,, FCC-ee: SR-Induced Outgassing Load, Cu reflectivity, for 0.1 s, 1h, 10 h, 1 day conditioning
- \
~ | |
3 | |
g e — f 107 g ] | | i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, F \ I I |
’ e i i B | | |
1'7'-“' } i i } : :
“& $ <)
‘,ﬂ’ 0° \§ bs\ — 10'6 777777777777777777777777777777
N A il
N K hd g
=
- Qtot ( mbar - Is):
ot -7
S w0 gk
=
N
o

2.07E-5 10h

1.72E-5 1d

107 T T N N T TN A N N M T NN A A T TN N N SN N A
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Z(m)
A This results in a dramatic increase of the SR-induced outgassing load profiles, and also of the

integrated gas load, because the outgassing yield h(mol/ph) depends on the integrated photon dose,
locally: approximately 6 times bigger for long conditioning times;



http://cds.cern.ch/record/2157666?ln=fr

A Pressure profiles corresponding to the realistic case of Cu reflectivity, for the Z-
pole are (valid for CO at 20 °C):

FCC-ee: SR-Induced Pressure Profiles, Copper, for 0.1 s, 1h, 10 h, 1 day conditioning

0 5 10 Z ( m ) 15 20 25
-5
10 B ] T T T T ] . I
= | | |
- | | |
B | | | |
| | | |
| |
P | | | |
10 — == — =i 4+ - 4 b 44—
— C | |
— C
< - | | | |
0 - | |
= |
— |
N
A 7

m Q 0 ©

A They refer to the case when 3 pumps per 25 m arc length are installed, with 133 I/s
effective pumping speed each (effect of conductance of pumping slots);
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A What if we vary the number of pumps per cell? (3 pumps/25 m arc length A 10k pumps/ring!)

FCC-ee: SR-Induced Pressure Profiles, Copper, 10 h conditioning

0 5 o L(m) 5 20 25
-5
10 ~ I I ‘ I | I ] ] ] | I I | ] I
u | | | |
B | | | |
i | | | |
| - N |
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< Prae | | L
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A Reducing from 3 to 2 and then to 1 pump per 25 m arc length we increase the
average pressure by a factor of 1.6 and 5.2, respectively (note: this is valid for the
13.9 A-hr integrated dose), a consequence of the conductance limitation;




A It can be seen that even after 1 full day at nominal current (33.4 A-hr), the average
pressure is of the order of 2-:10-7 mbar, which is very high (we aim at low 10-8 range or
better)

A For CO one typically finds that the product of the beam-gas scattering lifetime t and
the pressure P follow the relationship

tP =4.520Q0°(mbar(our)

(see http://cas.web.cern.ch/cas/zakopane-2006/PDFEs/Grobner.pdf )

A This means that if we want to have this lifetime contribution much longer (say 10x)
than the luminosity lifetime ( ~100+200 minutes for the Z-pole, depending on the
number of bunches), we would need the pressure to be ~1+2-10-° mbar or better, and
only when the pressure would be at least in the low-10-8 mbar range could we get a
gas-scattering lifetime similar to the luminosity lifetime, 1.6 ~ 3.2 hours;

A 1t becomes therefore evident that for the Z-pole the vacuum conditioning time
could be long, unless we are able to implement some sort of distributed
pumping;

Ideally, a very much reduced photodesorption yield h(mol/ph) would be the best
solution, for instance via massive NEG-coating of the chambers. We have recently
experimentally validated the fAthin NEGC

CE/RW
\
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http://cas.web.cern.ch/cas/zakopane-2006/PDFs/Grobner.pdf

A Areminder: how did LEP condition? (ref. O. Grobner, op. cit)

Vacuum conditioning in LEP
106E A By B B IR
—_— - I
E 10 . i [ |
S i A
5 1074 — NEG
E E . ﬂecondmomﬁg
= 00— A\
:E: ) -f .l\ - Dynamic vacuum
a #..J 1x108
[ P ow L S . sus
T R EPETTI NI STV BRI BRI Bl -E~ i SRS
o' 10° 10t 100 100 10t 10° | e RERX
Beam dose (mA h) S \\\
% 1x10® \‘\
g \‘& -
FCC-ee Z-pole at 1390 mA generates an g 1x10° o (e
. (=% \\
average linear flux of 4.86-1017 (ph/s/m); £ e,
. 2 110" >3
It would then need 114.3 hours in 5 L
order to accumulate 2:10%23 (ph/m); A gt My
1x10"7 1x10'® 1x10Y  1x10% 1x10%! 1x10% 1x10%® * 1x10%
The corresponding pressure would Photon dose (photons/ m)
be 1.85-108 mbar, or about 1~2 hours
_ ; : : . Discontinuities correspond to NEG activation/reconditioning
beam gas Scatterlng |Ifet|me’ Data at 45 GeV during initial running of LEP




A What is the effect of a distributed pumping?

A We have added a 3-strip distributed NEG pump in the winglet of dipole 1 and 2,
opposite to the absorbers (with only 100 |/s/m for the NEG strips ( ), a rather
conservative value);

A Re-run the ray-tracing SYNRAD+ code (assuming all photons going through the 2
longitudinal pumping slots are adsorbed), then Molflow+ to get the pressure:

FCC-ee: SR-Induced Pressure Profiles, Copper, 10 h conditioning
0 5 10 Z(m) 15 20 25
10-5 E I I T I T T I T I f
= | | | |
. ! ! | |
C ! | | |
L | I o |
107 7’(_J:t ————— —: ——————— }— —————— g | Pavg (TD):
-7 : : :
= - | | | |
o L | | | |
E AT N . SRS o TS —
SR absorber 3x 20mm N E | | | 7 SR
(~ in the middle of wide NEG A - | | | '’ N
10m-long dipole) . n | | | / 1.96E-8
strips N ~ 2N ’~ /
Y TN U U o SN0 A NSNS U 40 NS Y S S
— E— - SNt \--..”I \\ r = —I—
S e e I - =4 | ~_+7 |
New fiLinear ZAOU® plump - SAES | | |
; -‘—] i - | | | |
(18x 3 NEG discs, ~ 800 l/s/m H.)= L. 10 @
e e e e

500x2x8mm3
A The average pressure is ~ 1/77 of the one without distributed pumps: very effective!




/. Considerations about background in the interaction region
(see also M. Boscolo and M. Sullivan, presentations on MDI at FCC Week 2019, reflecting the CDR choice)

A The use of lumped absorbers placed at strategic locations to intercept all of
the primary SR fan can be applied to the interaction region too;

A Modelling results show that it would be possible to prevent most of the SR photons from
reaching, either directly or via multiple Compton-scattering chain, the Be chamber, thus
protecting the detector electronics and lowering the detector background,;

Last soft bends,
E.+<100 keV at T-pole

straight through SR, hits
~60 m past IP

Double absorber
on taper masks

last 8.7 m from IP
(in front of FF doublet)

~155 m from IP




/. Considerations about background in the interaction region

(see also M. Boscolo and M. Sullivan, presentations on MDI, reflecting the CDR choice)

A The use of lumped absorbers placed at strategic locations to intercept all of
the primary SR fan can be applied to the interaction region too;

A Modelling results show that it would be possible to prevent most of the SR photons from

reaching, either directly or via multiple Compton-scattering chain, the Be chamber, thus
protecting the detector electronics and lowering the detector background,;

straight through SR, hits
~60 m past IP

Double absorber
With ray-tracing and on taper masks
photon scattering on Cu last 8.7 m from IP

(in front of FF doublet)

~155 m from IP




8. Other vacuum components

A SuperKEKB has done an excellent job at prototyping and leading to industrial
production of a number of critical items for vacuum, namely low-loss bakeable metal
s e a lcemb-typeoORF contact fingers and gate valves with non-round
openings;

A We believe that it would be worth adapting these concepts to FCC-ee:

Courtesy: Y. Suetsugu, KEK




Booster and pre-accelerator chain; Tunnel integration
Booster: preliminary calculations: more challenging than foreseen, due to rather large
duty-factor and need to accelerate both e- and e+ beams to full energy (unlike LEP)

9.

A

A An ad hoc working group has been set up, to look at tunnel integration issues, and
try to simulate the amount of work necessary in order to install a typical arc sector

A

A

Worked together with Alignment group
Left: Oct 2019; Right: Feb 2020
Courtesy: Fani Valchkova-Georgieva, CERN-EN-ACE

3670

3670

75500

Absorber cooling circuit

3350

ppm———

200, /100

Busbar cooling circuit

| 1110 | 870 | 2370 | Alignment space reservation

| 1110 | 870 | 2370

| Alignment space reservation




9. Booster and pre-accelerator chain; Tunnel integration
A Integration of booster ON TOP of FCC-ee machine; Looking at ways to install ~ 8m-
long magnets (dipole families) and similar length vacuum chambers;

A Challenging sequence of installation and alignment, before and after bakeout;

Isometric view Courtesy: Fani ValchKova-Georgieva, CERN-EN-ACE




CERN
\
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M. Benedikt, CERN, FCC Week 2019, Brussels

((F5S)) Tunnel integration in arcs

3670

Future Circular Collider Study
Michael Benedikt
FCCW 2019, 24 June 2019, Brussels
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10. Future work towards the TDR (if R&D funds will be available)

A

> T

Design and integration of vacuum chambers and components (e.g. low-loss,
low/impedance RF contact fingers) within the common-yoke arc dipoles and
guadrupoles; Chamber supports and their alignment and integration in the tunnel,

Development of copper-based, low-loss UHV flanges;

Test at light sources (e.g. KARA/KIT and/or Dafne/Frascati) of FCC-ee vacuum
chambers and components, with special emphasis for the high-power lumped SR
absorbers (extremely high SR power densities at the ttbar resonance energy);

Identification of EC mitigation surface treatments for the e+ ring (e.g. laser-
ablation, NEG-coating, amorphous carbon), with particular attention to
industrialization of the process and related cost issues;

Analysis of further issues related to vacuum for the Machine Detector Interface
areas;

Detailed analysis and ray-tracing for special areas, such as polarization wigglers
for the FCC-ee storage ring and emittance reduction wigglers for the FCC-ee
booster; How should the booster vacuum chamber be shielded (high-Z material)?

Test of iLmeaedAOa@pedistriduted NEG pumps (SAES Getters, Milan,
Italy); Passive or active NEG activation? Promising solution, ~ 800 I/s/m for H,.

THANKS FOR YOUR ATTENTION J
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BONUS SLIDES

LEP vacuum chamber section = Al(nude) e AM3PH m  Al3/8Pb
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Fig. 2 : Vacuum chamber section made of (1) extruded aluminium profile with the E i |
elliptic beam channel, three cooling water ducts (2) and surrounded by 3 to 8 mm & | 0.'3 |
thick lead shield (3). The NEG pump (4) is housed in a separate pump channel E 3
connected to the beam channel by a row of longitudinal slots (5). E E
1074 L r N B NP B B
Experience from the LEP Vacuum System 20 40 60 80 100 120 140
E (GeV)

O. Grobner

CERN, LHC-VAC

Fraction of s.r. escaping from LEP aluminium vacuum chamber as a function of the energy.

; C tudied:
Workshop on an e'e” Ring at VLHC Nﬁff; 2h":3r:1%er
3 mm uniform lead coating

3 mm on top and bottom between dipole magnet gap and
ITT, 9-11 March 2001 8 mm on lateral parts




BONUS SLIDES
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