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Introduction 

In (most) 4th generation low emittance storage rings, harmonic cavities (also called Landau 
cavities) are critical components needed to reach design performances. 
 
 
They are mainly used to lengthen the bunches which provide: 
• Reduced intra-beam scattering (IBS) 
• Increased Touscheck lifetime 
• Reduced bunch spectral width 

 
 
 

 
 
Harmonic cavities also provide synchrotron tune spread: 
• Within a bunch  
• From bunch to bunch 

 Help to damp longitudinal (SB & MB) instabilities. 
 Can help to damp some transverse instabilities (if the head-tail 

mode number is  > 0). 

 Reduced heating 
 Reduced overlap with the high frequency region of the impedance 

spectrum 
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Introduction 

But harmonic cavities (HC) have also some drawbacks: 
 

• They can induce several instabilities. 
 
 The DC Robinson instability, which is a phase stability problem. Above a current 

threshold, the potential well produced by the beam loading voltage in the cavity 
begins to be unstable for the single particle motion (no oscillation). 
 

 The AC Robinson instability, which is defined as a longitudinal coupled-bunch 
instability driven by the fundamental cavity mode. So a special case of the usual 
HOM instability case. 
 

 The TMCI threshold (so at zero chromaticity) is reduced by HC in bunch lengthening 
mode. 

 
• Transient beam loading (TBL) if the beam filling scheme is not symmetric. The TBL comes 

from the fact that the cavities interact with a variable current along the bunch train. This 
leads to a spread of the phases and voltages seen by the bunches along the train: 
 Bunch to bunch phase shift 
 Bunch length variation along the bunch train 
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Overview 

 Difference between active/passive and normal/super conducting HC (in 
the beam dynamics point of view). 
 

 How to compute beam loading equilibrium (Haïssinski vs tracking). 
 
 Case study: a passive normal conducting HC (ALS-U) and a passive super 

conducting HC (SOLEIL-U). 
 

 Present results for SOLEIL-U with different filling patterns, 3rd harmonic 
vs 4th harmonic. 

 
 The transient beam loading (TBL) problem. 
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The RF system is usually operated near the “flat potential conditions”: 

𝑉𝑡𝑜𝑡(𝑡) = 𝑉1 cos 𝜔𝑅𝐹𝑡 + 𝜙1 + 𝑉2cos⁡(𝑚𝜔𝑅𝐹𝑡 + 𝜙2) 

𝑉𝑡𝑜𝑡 0 =
𝑈𝑙𝑜𝑠𝑠
𝑒

 

𝑑𝑉𝑡𝑜𝑡
𝑑𝑡

0 = 𝛼1 ≈ 0 

cos 𝜙1 =
𝑚2

𝑚2 − 1

𝑈𝑙𝑜𝑠𝑠
𝑒𝑉1

 

tan 𝜙2 =
𝑉1𝜔𝑅𝐹 sin 𝜙1 − 𝛼1 ⁡𝑚

𝑉1𝜔𝑅𝐹 cos 𝜙1
 

𝑉2 = −
𝑉1 cos 𝜙1
𝑚2 cos 𝜙2

 

(active or perfect) Harmonic cavity 

The total voltage given by an RF system with a mth harmonic cavity can be expressed as: 

Where the following condition is imposed to insure energy balance: 

Which gives the following conditions: 

𝛼1 = 𝛼2 = 0 

Voltage and phase of the main cavity Voltage and phase of the harmonic cavity 

𝑑2𝑉𝑡𝑜𝑡
𝑑𝑡2

0 = 𝛼2 ≈ 0 

Losses per turn 
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(passive) Harmonic cavity 

For a passive harmonic cavity, the voltage and the phase of the harmonic cavity can not be set 
independently.  The harmonic voltage is given by: 

cos 𝜙1 =
𝑚2

𝑚2 − 1

𝑈𝑙𝑜𝑠𝑠
𝑒𝑉1

 
tan 𝜓 =

𝑉1𝜔𝑅𝐹 sin 𝜙1 − 𝛼1 ⁡𝑚

𝑉1𝜔𝑅𝐹 cos 𝜙1
 

𝑉2 = −
𝑉1 cos 𝜙1
𝑚2 cos 𝜓 2 = −2𝐼0𝑅𝑠 

tan 𝜓 = 𝑄
𝜔𝑟
𝑚𝜔𝑅𝐹

−
𝑚𝜔𝑅𝐹
𝜔𝑟

 

𝑉 𝑡 = −2𝐼0𝑅𝑠 Fcos 𝜓 cos 𝑚𝜔𝑅𝐹𝑡 + 𝜓⁡ + Φ ⁡ 

Where 𝜓 is the tuning angle, which is linked to the resonance angular frequency 𝜔𝑟 of the 
cavity by:  

Beam current Cavity shunt impedance 

For a chosen beam current 𝐼0 and shunt impedance 𝑅𝑠, conditions to get the “flat potential” 
are very similar to the active case: 

But if 𝐼0 and 𝑅𝑠 are already fixed, only 2 degrees of freedom are left with 𝜓 and 𝜙1 so it 
is not possible to achieve “flat potential” any more. 

𝑉𝑡𝑜𝑡 0 =
𝑈𝑙𝑜𝑠𝑠
𝑒

 
𝑑𝑉𝑡𝑜𝑡
𝑑𝑡

0 = 𝛼1 ≈ 0 
𝑑2𝑉𝑡𝑜𝑡
𝑑𝑡2

0 = 𝛼2 ≈ 0 

Cavity quality factor 

Form factor (depend on bunch profile) 
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Normal/Super conducting passive HC 

𝛼1 = 0 

𝛼1 = 0 

For a normal conducting (NC) passive harmonic cavity, you can design the system 
(𝑅𝑠 ≈ 𝑀Ω) in such a way to achieve “flat potential” conditions for given current value 𝐼0. 
For all other currents, the cavity tuning needs to change to get the correct voltage in the 

harmonic cavity which also change the phase, so you can not cancel 
𝑑2𝑉𝑡𝑜𝑡

𝑑𝑡2
. 

 
For a super conducting (SC) passive harmonic cavity, the shunt impedance 𝑅𝑠 is very high, 
typically 𝑅𝑠 ≈ 𝐺Ω, so the current needed to be at “flat potential” condition is very low. In 

practice, you can never have 
𝑑2𝑉𝑡𝑜𝑡

𝑑𝑡2
= 0. 
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Normal/Super conducting passive HC 
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Overview 

 Difference between active/passive and normal/super conducting HC (in 
the beam dynamics point of view). 
 

 How to compute beam loading equilibrium (Haïssinski vs tracking). 
 
 Case study: a passive normal conducting HC (ALS-U) and a passive super 

conducting HC (SOLEIL-U). 
 

 Present results for SOLEIL-U with different filling patterns, 3rd harmonic 
vs 4th harmonic. 

 
 The transient beam loading (TBL) problem. 
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“Analytic” calculation of bunch profile 
It is possible to compute the bunch profile from the total voltage of the RF system by solving 
a system similar to the Haïssinski equation[1]: 

𝑢 𝑡 ∝ ⁡ 𝑒𝑉𝑡𝑜𝑡 𝑡′; 𝐹, Φ − 𝑈0 𝑑𝑡
′

𝑡

 

𝜌 0 𝑚𝜔𝑅𝐹 = 𝐹𝑒
𝑖Φ =  𝑒𝑖𝑚𝜔𝑅𝐹𝑡 𝜌0 𝑧 𝑑𝑧 =

 𝑒𝑖𝑚𝜔𝑅𝐹𝑡𝑒−𝑢 𝑡;𝐹,Φ

 𝑒−𝑢 𝑡′;𝐹,Φ 𝑑𝑡′
 

𝑉𝑡𝑜𝑡 0 =
𝑈𝑙𝑜𝑠𝑠
𝑒

 

FT of the bunch profile taken at 𝑚𝜔𝑅𝐹 

System of 
equation to solve 
numerically to find 
𝐹, Φ and 𝜙1 

• Define a scaled potential which depends on the bunch profile via 𝐹 and Φ: 

• The bunch profile is then given by 

For a given 𝑅𝑠 and 𝜓, you get 𝐹, Φ and 𝜙1 which 
allows you to compute the bunch profile. Finding a 
solution does not say anything about its stability. But 
if no solution exists, the beam can not be stable. 

𝜌0 𝑡 =
𝑒−𝑢 𝑡;𝐹,Φ

 𝑒−𝑢 𝑡′;𝐹,Φ 𝑑𝑡′
 

[1] Venturini, M. (2018). Passive higher-harmonic rf cavities with general settings and multibunch instabilities in electron storage 
rings. Physical Review Accelerators and Beams, 21(11), 114404. 
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In macro-particle tracking 

The usual way to include RF systems in macro-particle tracking code is just a sum of cosine 
(or sine) like: 

Δ𝑅𝐹 = 
𝑒𝑉𝑛
𝐸0

𝑛

cos⁡(𝑚𝑛𝜔𝑅𝐹𝑡 + 𝜙𝑛) 

But this approach can not simulate instabilities generated by the RF system or the transient 
beam loading. Instead, the total cavity voltage 𝑉𝑐  is decomposed in two components, the 

generator voltage 𝑉𝑔  and the beam induced voltage 𝑉𝑏 . 

𝑉𝑐 = 𝑉𝑔 + 𝑉𝑏  
When a charged particle goes through the RF cavity, it 
induces a voltage 𝑉0 :  

𝑉0 = −2𝑞𝑘𝑙 

The voltage induced by the different particles crossing the 
cavity between time t and time t+∆t is added to the voltage 
𝑉𝑏  already present in the cavity at time t:  

𝑉𝑏 𝑡 + Δ𝑡 = 𝑉𝑏 𝑡 𝑒
−
Δ𝑡
𝜏 𝑒𝑗𝛿Δ𝑡 + 𝑉0  

Cavity filling time Cavity phase slippage 

Particle charge Cavity loss factor 

Δ𝑅𝐹 = 
𝑒

𝐸0
𝑉𝑔,𝑛 cos 𝑚𝑛𝜔𝑅𝐹𝑡 + 𝜙𝑔,𝑛 + 𝑅𝑒 𝑉𝑏 − 𝑞𝑘𝑙

𝑛

 

So the energy change of a particle is given by[1]: 

 

 

[1] Yamamoto, N., Gamelin, A., & Nagaoka, R. (2019). Investigation of Longitudinal Beam Dynamics With Harmonic Cavities by Using the 
Code Mbtrack. IPAC’19. 
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Overview 

 Difference between active/passive and normal/super conducting HC (in 
the beam dynamics point of view). 
 

 How to compute beam loading equilibrium (Haïssinski vs tracking). 
 
 Case study: a passive normal conducting HC (ALS-U) and a passive super 

conducting HC (SOLEIL-U). 
 

 Present results for SOLEIL-U with different filling patterns, 3rd harmonic 
vs 4th harmonic. 

 
 The transient beam loading (TBL) problem. 
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NC passive harmonic cavity 

ALS-U case @ 𝐈 = 𝑰𝟎 =⁡500 mA   

𝑑𝑉𝑡𝑜𝑡
𝑑𝑡

0 ∝ 𝛼1 

𝑑2𝑉𝑡𝑜𝑡
𝑑𝑡2

0 ∝ 𝛼2 

“Flat potential” conditions for 245 kHz 
𝛼1 ≈ 𝛼2 ≈ 0 

𝜎𝑠 = 48⁡𝑝𝑠 

= 𝑓𝑟 −𝑚𝑓𝑅𝐹  

stable 

Parameters for ALS-U from: [1] Venturini, M. (2018). Passive higher-harmonic rf cavities with general settings and multibunch 
instabilities in electron storage rings. Physical Review Accelerators and Beams, 21(11), 114404. 

Main cavity: 
• 𝑉𝑅𝐹 = 0,6⁡𝑀𝑉 

Passive harmonic cavity: 
• 𝑚 = 3 
• 𝑅𝑠 = 1,35 × 10

6⁡Ω 
• 𝑄0 = 𝑄𝐿 = 20⁡000 

Simulation parameters[1]: 
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NC passive harmonic cavity 

ALS-U case @ 𝐈 = 𝑰𝟎 =⁡500 mA   

𝑑𝑉𝑡𝑜𝑡
𝑑𝑡

0 ∝ 𝛼1 

𝑑2𝑉𝑡𝑜𝑡
𝑑𝑡2

0 ∝ 𝛼2 

If the cavity is tuned past the flat potential 
condition, you get “double bump” profile. 

= 𝑓𝑟 −𝑚𝑓𝑅𝐹  

𝜎𝑠 = 66⁡𝑝𝑠 

stable 
(DB) 



XXXXXXX 15 

NC passive harmonic cavity 

ALS-U case @ 𝐈 = 𝑰𝟎 =⁡500 mA   

𝑑𝑉𝑡𝑜𝑡
𝑑𝑡

0 ∝ 𝛼1 

𝑑2𝑉𝑡𝑜𝑡
𝑑𝑡2

0 ∝ 𝛼2 

If the cavity is tuned past the flat potential 
condition, you get “double bump” profile. 

= 𝑓𝑟 −𝑚𝑓𝑅𝐹  

Coupled bunch motion starts to appear 
as the detuning decreases. 

stable 
(DB) 
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NC passive harmonic cavity 

ALS-U case @ 𝐈 =⁡300 mA  
 𝑰𝟎 = 500 mA   

Can not reach “flat potential”, 𝛼1 ≠ 0 

𝜎𝑠 = 40⁡𝑝𝑠 

stable 
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NC passive harmonic cavity 

ALS-U case @ 𝐈 =⁡300 mA  
 𝑰𝟎 = 500 mA   

Detune = 140 kHz 

Coupled bunch oscillations of bunch center of 
mass (dipole mode) => AC Robinson instability 

Oscillations of bunch profile with a mix 
of dipole mode, quadripolar mode, … 

unstable 

No solution for the Haïssinski solver. 
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SC passive harmonic cavity 

SOLEIL Upgrade case @ 𝐈 =⁡500 mA  

stable 

𝜎𝑠 = 46⁡𝑝𝑠 

SC HC so can not reach “flat 
potential”, 𝛼1 ≠ 0 

Main cavity (4 ESRF-EBS type): 
• 𝑅𝑠 = 19,6⁡𝑀Ω 
• 𝑄0 = 34⁡000 
• 𝑄𝐿 = 6⁡000 
• 𝑉𝑅𝐹 = 1,4⁡𝑀𝑉 

Passive harmonic cavity 
(2 Super3HC type): 
• 𝑚 = 3 
• 𝑅𝑠 = 90 × 10

8⁡Ω 
• 𝑄0 = 𝑄𝐿 = 10

8 

Simulation parameters: 
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SC passive harmonic cavity 

SOLEIL Upgrade case @ 𝐈 =⁡500 mA  

“Double bump” profile on some of the 
bunches and strong coupled bunch motion 

stable (DB) 
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SC passive harmonic cavity 

SOLEIL Upgrade case @ 𝐈 =⁡500 mA  

unstable 

Fast loss of all bunches (oscillations of bunch 
profile with a mix of modes), dipole coupled 

bunch motion => AC Robinson instability 

No solution for the Haïssinski solver. 
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Some comments and conclusions about 
the case study 

Depending on the parameters and on the cavity tuning, there are 3 distinct regimes: 
 
• The bunch lengthening regime which starts from detune = +∞ to the flat potential (or 

to the minimum of 𝛼1 =
𝑑𝑉𝑡𝑜𝑡

𝑑𝑡
 if FP can not be reached). 

• The double bump (DB) regime which starts after the maximum of 𝛼1. But this regime is 
not always present, sometimes it goes directly to AC Robinson. I explain this stable state 
regime as the start of the coupled bunch instability which is stabilized by the bunch-to-
bunch frequency spread induced by the phase shift. 

• The AC Robinson regime where the center of mass of all bunches oscillates in phase and 
lead to beam loss. The different bunches oscillate in their potential which leads to the 
apparition of the mix of bunch profile modes. 

Comments on methods: 
 
• Good agreement between tracking and analytical calculation when the beam is stable. 
• If it seems there is no solution of the equation system for the equilibrium bunch 

profile, it is a strong hint of an instability at that point. 
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Overview 

 Difference between active/passive and normal/super conducting HC (in 
the beam dynamics point of view). 
 

 How to compute beam loading equilibrium (Haïssinski vs tracking). 
 
 Case study: a passive normal conducting HC (ALS-U) and a passive super 

conducting HC (SOLEIL-U). 
 

 Present results for SOLEIL-U with different filling patterns, 3rd harmonic 
vs 4th harmonic. 

 
 The transient beam loading (TBL) problem. 
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• No HC => natural bunch length 𝜎𝑠0 
• Perfect => cosine voltage without impedance 
• Uniform => uniform fill and 500 mA 
• ¾ => ¾ fill and 450 mA 
• Single => single bunch and 20 mA 
• 7/8 => 7/8 fill and 450 mA 

Results for SOLEIL-U 

𝑉1 = 1,4⁡𝑀𝑉 



XXXXXXX 24 

A few remarks: 
• In the 4th harmonic, the maximum bunch length is limited by the AC Robinson 

instability. 
• There is no problem to have long bunches at low current (single bunch mode) 

because the HC is a super conducting cavity (high shunt impedance). 
• The maximum bunch length obtained is very limited in ¾ mode because of a very 

strong transient beam loading ! 

𝑉1 = 1,4⁡𝑀𝑉 

Results for SOLEIL-U 
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 Difference between active/passive and normal/super conducting HC (in 
the beam dynamics point of view). 
 

 How to compute beam loading equilibrium (Haïssinski vs tracking). 
 
 Case study: a passive normal conducting HC (ALS-U) and a passive super 

conducting HC (SOLEIL-U). 
 

 Present results for SOLEIL-U with different filling patterns, 3rd harmonic 
vs 4th harmonic. 

 
 The transient beam loading (TBL) problem. 
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Main Cavity TBL 

Why the TBL is so important in SOLEIL Upgrade case: 
 The voltage transient Δ𝑉 = 𝑉𝑏𝑟𝜏𝑔 depends only on the gap, the cavity and the beam 

current. 

 The phase transient Δ𝜃 ≈
Δ𝑉

𝑉𝑐
sin𝜙 +⋯ depends also on the total voltage 𝑉𝑐 and the 

synchronous phase 𝜙𝑠. 

Configuration 𝚫𝜽 𝑻𝒇 Δ𝑇𝑔 𝝉𝒈 𝑽𝒃𝒓 𝚫𝐕 𝑽𝒄 

SOLEIL ¾ (450 mA), SC 4,4 ps 45,2 𝝁𝒔 0,3 𝜇𝑠 0,006 4,1 MV 27 kV 2,8 MV 

SOLEIL-U ¾ (450 mA), NC 62,5 ps 5,5 𝝁𝒔 0,3 𝝁𝒔 0,054 3,1 MV 169 kV 1,4 MV 

SLS ¾ (200 mA), NC 7,0 ps 8,5 𝝁𝒔 0,24 𝝁𝒔 0,028 1,7 MV 47 kV 2,2 MV 

Δ𝜃 ≈
Δ𝑉

𝑉𝑐
sin𝜙𝑠 +⋯ 

Gap duration 

Cavity filling time Δ𝑉 = 𝑉𝑏𝑟𝜏𝑔 =
2𝐼𝑅𝑠

1+𝛽
 
Δ𝑇𝑔

𝑇𝑓
 

𝑉𝑏𝑟 =
2𝐼𝑅𝑠
1 + 𝛽

 
𝜏𝑔 =⁡

Δ𝑇𝑔

𝑇𝑓
 

Cavity coupling 
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Impact of TBL on bunch lengthening 

𝑤3 ≈ 100 ps 

𝑤4 ≈ 70 ps 

Main RF 
Voltage 

Phase shift induced 
by Main RF 

1,2 MV 77,1 ps 

1,4 MV 62,5 ps 

1,7 MV 49,2 ps 

2 MV 40,7 ps 

2,2 MV 36,6 ps 

SOLEIL-U ¾ (450 mA) 

So to reduce TBL, we need to avoid: 
• High R/Q cavities 
• Long gap (so longer rings for fixed filling factors) 
• Low RF Voltage 

For SOLEIL-U with ESRF-EBS type cavities, the phase 
transient provided by main RF cavities is of the same 
order of magnitude compared to the width of the flat 
potential (in the ideal case)!  

The TBL from main cavity explains some of 
the difficulties in lengthening the bunches 
in this configuration. 

When both systems, fundamental and 
harmonic, are taken into account, the 
phase shift from the TBL can reach 
more than 400 ps and remove most of 
the benefit of the HC in that operation 
mode. 
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General message from this talk 

 There are important beam dynamics consequences in the choices between active or 
passive HC and super or normal conducting HC. 
 Passive normal conducting HC induces asymmetric bunch profiles if not at design 

current 
 Passive super conducting HC always induces asymmetric bunch profiles 

 
 Be very careful when you design your HC system. 

 The double bump bunch profile generally happens if you tune your HC past the 

minimum of 
𝑑𝑉𝑡𝑜𝑡

𝑑𝑡
≈ 0 

 The AC Robinson instability can limit the maximum bunch length you can achieve  
 
 Asymmetric filling pattern can lead to severe transient beam loading, to avoid that try 

to: 
 Use cavity with lower R/Q.  
 Use higher main cavity RF voltage. 
 Shorter gaps … 
 “Guard” bunches (=use different current per bunch, typically higher current in the head and tail of 

the bunch train). 

 Feedforward system with dedicated cavity (see N. Yamamoto paper about transient beam 

loading compensation). 
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Thank you for your attention! 
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Backup 
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Simulation parameters for SOLEIL-U 

Lattice : SOLEIL_U_74BA_HOA_SYM04_V0200 

𝛼𝑐 = 9,4 × 10
−5 

𝑈0 ≈ 682⁡𝑘𝑒𝑉 
𝜏𝑠 = 11,9⁡𝑚𝑠 
𝜎𝑠0 = 9,2⁡𝑝𝑠 

Main cavity: 
• 𝑅𝑠 = 19,6⁡𝑀Ω 
• 𝑄0 = 34⁡000 
• 𝑄𝐿 = 6⁡000 
• 𝑉𝑅𝐹 = 1,4⁡𝑀𝑉 

Passive harmonic cavity: 
• 𝑚 = 4 (or 3) 
• 𝑅𝑠 = 90 × 10

8 
• 𝑄0 = 1 × 10

8 
• 𝑄𝐿 = 1 × 10

8 

Value with IDs 
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Higher order Robinson instability 

Recently, a coupled bunch instability was predicted for ALS case by M. Venturini (ALS) using 
perturbation theory (Vlasov equation). The instability seems to be driven by the imaginary 
part of the cavity impedance rather than by its real part. 

Venturini, M. (2018). Passive higher-harmonic rf cavities with general settings and multibunch instabilities in electron storage 
rings. Physical Review Accelerators and Beams, 21(11), 114404. 

Using the parameters given in the paper, it was possible to reproduce the instability: 
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Benchmark 

This algorithm has been implemented in the multi-bunch tracking code mbtrack (by N. 
Yamamoto). Using mbtrack, it was possible to reproduce different instabilities and the 
transient beam loading effect: 

2𝑉𝑐 sin 𝜙 + 𝑉𝑏𝑟 sin 2𝜓 > 0 

Wilson, P. B. (1994). Fundamental-mode rf design in e+ e− storage ring factories. In Frontiers of Particle Beams: Factories with e+ 
e-Rings (pp. 293-311). Springer, Berlin, Heidelberg. 

• DC (static) Robinson 
• Transient beam loading 
• AC Robinson (coupled bunch) 
• Cavity HOM 
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TBL theory (for a single cavity) 

Δ𝑉 = 𝑉𝑏𝑟𝜏𝑔 

Δ𝜃 ≈
Δ𝑉

𝑉𝑐
sin𝜙 + tan2𝜙 + 2

Δ𝑉

𝑉𝑐
cos𝜙 − tan𝜙  

𝑉𝑏𝑟 =
2𝐼𝑅𝑠
1 + 𝛽

 

Wilson, P. B. (1994). Fundamental-mode rf design in e+ e− storage ring factories. In Frontiers of Particle 
Beams: Factories with e+ e-Rings (pp. 293-311). Springer, Berlin, Heidelberg. 

𝑇𝑓 =
2𝑄𝐿
𝜔𝑟

 

Beam filling: Δ𝑇𝑔= gap duration 

𝑇𝑏 = 𝑇0 − Δ𝑇𝑔 =  beam duration 

If the two conditions are verified: 

• The gap duration Δ𝑇𝑔 is long compared to the cavity filling time 𝑇𝑓  𝜏𝑔 =
Δ𝑇𝑔

𝑇𝑓
≪ 1 

• The beam duration 𝑇𝑏 is long compared to the cavity filling time 𝑇𝑓  𝜏𝑏 =
𝑇𝑏

𝑇𝑓
≫ 1 

Then the voltage and phase transient for main RF, Δ𝑉 and Δ𝜃, can be 
expressed very simply as:  



XXXXXXX 36 

Main Cavity TBL 

For the usual parameters (SOLEIL, SLS, SOLEIL-U) and gaps, the second condition 𝝉𝒃 ≫ 𝟏, 
is never valid … 
 
But the formula still seems to work quite well to predict simulation data: 

Configuration Main RF type Formula mbtrack 

SOLEIL ¾ (450 mA) SC 4,4 ps 4,7 ps 

SOLEIL-U ¾ (450 mA) NC 62,5 ps 61,8 ps 

SLS ¾ (200 mA) NC 7,0 ps 6,9 ps 

Why such a difference between SOLEIL-U and SLS, which are both using normal 
conducting cavities (NC) for main RF ?  
 Factor 2,25 between SLS and SOLEIL-U in current 
 Factor 9 between SLS and SOLEIL-U in phase shift 


