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Q: Why higher-harmonic (aka “Landau”) cavities
in low-emittance storage rings?

* A: Primarily for bunch lengthening =» smaller IBS effects, longer
Touschek lifetime

* Q: How about the “Landau” aspect of HHCs, to help against instabilities?

* A: It's complicated ...
— HHCs can benefit or hurt the beam dynamics (or be neutral) depending on the
particular type of instability and specific (HHC design, beam) parameters.
— A full discussion is left for another time ...

— HHCs can introduce instabilities on their own through the fundamental mode
(this talk; see also Alexis Gamelin’s talk at this workshop) or by adding more
HOMs to those of the main rf cav.
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Outline

* Introduction

* Finding the beam equilibrium
— Uniform beam fill
— Arbitrary beam fill

* An interesting formula: beam-power dissipated in the HHC

e A useful formula for the dipole, £ = 1 multi-bunch longitudinal instability
The dipole, £ = 0 (Robinson) instability revisited

Status of the ALS-U 3HC design

Note & disclaimer: Focus of this talk is on
normal-conducting, passive HHC. Not all
results are necessarily applicable to SC HHCs.
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HHCs lengthen the bunches by flattening
the RF potential well (zeroing the rf voltage slope)

Main RF cavity only Main + Higher-Harmonic Cavity
+ ﬁb
A A s
Quadratic RF potential well Flat RF potential well
Locally linear RF voltage Vanishing RF voltage slope
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The beam HHC interaction is well described by
a narrow-band resonator impedance model

Main + Higher-Harmonic Cavity

R .
Z(w) = = R, costh,e Vv,
1 +iQ (% - 5)

+

* The tuning angle Y measures proximity
to resonance () = 0 =» on resonance)

Cavity higher-harmonic no.

HHC resonance frequency /
L RF generator frequency

W, — 3ws
tany =~ 2Q — -
w‘l"
Quality factor
In NC HHCs, ) is the control parameter
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One-hump, two-hump, and maximally-flat bunches

“1®a_ bunchlengthvs i For ¥ = Y it and for a given current
g Y : : = there’s a special value of R such that
o “w\.\.*. ! Vi = 0 as well = quartic rf potential =»
N S DU N U I ' flat profile (often referred as “optimal”)
o . <z>=-0.270569mm; 0,=15.1474mm
tuning angle for the ! 20;
punch UrDFJJf to develop sl 15
two humps (vanishing ;
' ) L
rf voltage slope, Vi, = 0): |2 19
. 5
‘GiHQTD i+ ‘/rf’COS Cbs' ' : :
e T harm R Lave F il | O = ~_
) - /ﬂl’” : | -0.04 -0.02 0.00 0.02 0.04
' z (m)
Typical form factor _
at transition: F~0.9 J{, e e« Largest lifetime is, in fact, for two-
—or o002\ oo0o hump (“overstretched”) bunches.
(m) L — But overstretching comes with its
| own perils ... (see later slides)
. 2 ALS-U overstretched ' * Analysis based on uniform-fill
""" ‘,‘ s . .
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A Haissinski-like equation governs the form of the beam equilibrium

*  Thermal equilibrium: f~e~H/F.

E,—u(z;F,‘ZD)

polws) = Fe™

Fourier transform of bunch profile

pﬂ'(‘?) - fe—u{z’;F,tI})dEf '

at higher-harmonic of RF generator:
W3 = 3Wys.

rf potential | u(z: F.®) = — [*[eVo(21pg) —

Upldz' [ (acosEoT,)

The importance of the phase ®
(Tavares et al., PRAB, 2014)

Total RF voltage includes main cavity + HHC

V,f.g(Z;ﬂg) = Vl{] sin(klz @

R

— 21y, 0S q&:os(ig:z +
/7

\\ /

The three unknowns

& ALS-U
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ki = wye/c, ks = 3wye/c

Two eq.s for F and ®:

Fcosd =

Fsin®

[ cos(kyz)e#@FP) 7
fe—u(z;F,tI)) dz '

B fsin(kgz)e‘“(zf"b)dz
o I‘e—u(z;F,tI})dz '

+ eqg. for synchronous phase (energy balance)

Vipsingy = Uq + 21, R F cosy cos(yy — D).




An interesting expression for the dissipated beam
power for “optimum” HHC settings

 Remarkably, for optimum HHC parameters the expression for the beam-power
dissipated to HHCs exhibits no explicit dependence on R and

— General expression for arbitrary R, ¥: Pyyc = 215,4RsF* cos®

P : P
HHC ™ le —1 rad For 3" HC:

: : ‘PBHCZO-lxprad\
n = higher-harmonic number

Form factor: F =~ 1 — (Bwys0;)%/2 =~ 0.9

Disclaimer: formula is not applicable to SC HHCs,
which tend to operate far from “optimum”
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Recent progress on beam equilibrium for non-uniform fill

 When gaps are present in the beam fill, the form of bunch equilibrium varies bunch to bunch

* The problem of finding the equilibrium is numerically more complicated but its formulation is formally
similar to that of the uniform beam fill

3HC voltage
Uniform beam fill: | V(r) = —2I,,,FR,cosi cos(wst + 1) — @),
Arbitrary beam fill m] N,
Vn — av n’ Zn n’ 5| Wt nn’ (I)TL’ ~ 1Py,
of n,, bunches: (7) g Z ¢ Nt Fu| Znge| cos(wsT + n, ) pn(ws) = F,e'®n

e 2ny equations for 2n; unknowns (form-factor parameters F, and ®,, for the n-bunch).
— + 1 equation for main rf cav. phase

 Newton-method (with derivatives calculated from symbolic expressions) is effective and
robust (R. Warnock and M.V., PRAB 23, 064403, 2020):

— “stiffer” cases (typically those that involve extreme lengthening) can be handled by ramping up the
beam average current adiabatically

— Even for extreme lengthening, in all cases tried so far the algorithm has never failed to converge
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Semi-analytical method reproduces transient beam-loading
simulations results fairly well.

Bunch centroids slew along 284-bunch, 11-train beam Profiles of first and last bunch of first train

Semi-analytical : ~ :
method (red) 4 PO T T T ‘, PO 20 ) adng 200
0 T S S T S S T S trailing bunch & —1 elegant
= , FE S Tt " ' ‘ t 15 (curves)
AR RS EE R g
A T N T T T T T S 10
v . : . . [ . ‘. " [ ] '.. 1 . .
0 v 3 Y T oy oy % ‘ A Semi-analytical
4oy ; % _’ 5 .‘/ method (dots)
elegant | . 0
(black) | 50 100 150 200 250 -0.04 -002 000 002 0.04
| bunch no. Zz (m)

* ALS-U beam-fill example: 284 bunches, 11 trains; 10ns gaps (4 empty rf buckets)
— Macro-particle simulations by elegant

* Compared to ALS fill (with one long train and relatively long gap) transient effects from 3HC beam
loading, i.e. bunch to bunch variations, are relatively smaller

— In ALS transient effects prevent the attainment of the bunch lengthening that would be possible with uniform fill
&
SOy ALS-U
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Pictorial view of the dipole £ =0and £ = 1
coupled-bunch longitudinal modes

‘\ - \\ - \\ - ‘\ - ‘\ - \\ - \\ - \\ - \\

V' = P ~ - -
St I NG I N N XX BN )X )
~ ~» \~ R4 ~-/ =4

Phase of oscillation varies
as e?™M/Mb glong beam

- (% i _
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HHCs and multi-bunch longitudinal beam instabilities

e Conventional linear-Vlasov methods apply to uniform beam fill (identical bunches)

— Robust algorithms for finding equilibrium for non-uniform fill beams open the door to theories
applicable to the more general case

— Technical problems (perturbation theory in double-well potential) + large no. of degrees of freedom

* Existing theory (e.g. Bosch, et al, PRAB 2001) is for multi-bunch instabilities with coupled-
bunch mode £ = 0 and dipole, quadrupole, ... dipole/quadrupole azimuthal modes
(Robinson instability)

— Purely HHC quartic rf potential
« MV PRAB 2018: analysis of £ = 0 and £ = 1 (dipole) coupled-bunch modes based on exact
numerical solution of unperturbed motion in arbitrary HHC rf potential
— Results are very close to those we get by assuming a quartic rf potential
— Clarified that HHC contribution to the Robinson (dipole) instability is never Landau damped

* In the next few slides:

1. Analyze £ = 1 and present an approximate expression for the critical HHC R;/Q at the onset of
instability

2. Comment on the expression for the HHC Robinson instability growth rate
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From the standard analytic tool box: dispersion equation,
effective impedance, Keil-Schnell diagram, and the “onion”

Scaled effective impedance:

e Q) = - Ze
Gt (€1) 9%, EoTo(ws)?(0-k1)2 " ( 0.816

Dispersion equation: /
—L @)
a7

/

G(Q) =

o0 4 72 —zt
x*J7(5.16 X kyo.x)e
dx L =
/[) 02 — g2

Particle motion in quartic rf potential; Y = 1 couple-bunch mode

& ALS-U
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The beam-cavity interaction driving the instability
is captured by the effective impedance

HHC fundamental-mode
ZCH,E(Q) i 3Z(w3,€ + Q) — Sz(w—3,€ + Q) impedance is sampled at these

beam harmonics:
w43, = T3hwy + twg

 We are interested in coupled-bunch mode ¥ =1
* If £ # 0, we can neglect the coherent mode-frequency () < w, in the expression for Z.¢

* The effective impedance depends on the HHC tuning
— Choose tuning angle 1 for vanishing RF voltage slope (at transition from single to double-hump profile):

I/rf’ COS Cb.sl
nharmRs Iang

sin 2wcrit =

P
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A simplified but reasonably accurate expression forthe? = 1
effective impedance of the HHC fundamental mode

* Exploit Q > 1 to workout a limiting expression for the effective
impedance valid for Q — oo and finite R;/Q:

, (R, * Lo FR20* [hn y
eff /=1 — Q V}f|COS(j51| Q |

n = higher-harmonic number

* The above expression is valid if R/Q is not too large; (not very restrictive in practice:
R/Q less than a few 100s () f V2 cos? ¢y

R— <<
Q avg F2h2n4

U
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Solve dispersion equation by approximating the boundary
of Keil-Schnell’s onion with local tangent

- Parametric curves
- representing (ofs . . .
>0 ' in the complex plane |* EXploit the observation that in the range of
for various fixed Q interest for Q (normal-conducting cavities) the
40f while R, varies curves representing Z,¢¢ intersect the onion

boundary in a relatively narrow region where we

— 30| can approximate the boundary by the tangent:
<9, / B ~ Cichm 1.31
Q 99 ~2:---.._"'€® "oniop~ Y ' (okp)5/3
o AR — Thisis a fairly accurate approximation for g, k¢ in
S ! the range between 0.1 and 0.2 but it is still OK over
Y a somewhat larger range. For ALS-U, o,k =~ 0.16
0
, * The critical R, for instability is found by solving a
ol | system of linear algebraic equations (intersection
6 1 2 3 4 5 6 of the tangent to the “onion” and Z,( )

P
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End result: critical R/Q for the £ = 1 CBI instability

Ry ~ 3.35 x o5 EoaVig| cos ¢ 1/2
Q)i n?(kyo, )%/ | el2,, Fh(1+2.8 x nh/Q)

avg

e RHS is typically a very weak function of Q: nh/Q = 3 X 328/24000 = 0.04 «< 1; i.e. to a very good approx.
the instability depends exclusively on the ratio R,/Q *

* Disclaimer: The formula is expected to be accurate for parameters in the neighborhood of the ALS-U HHC

— For more general parameters the formula should be verified against numerical solutions of the exact dispersion
equation and/or simulations

/=1
Exact numerical solution of dispersion equation ; —————— v ..
/=1 CBI growth rate 80 ;e Q=24000 1 from the main cavity
T r ' ' ' can also contribute;
Q=24000 60t e Rs=3.0 MQ - For ALS-U cavity
T <a'—< i parameter this is
’g 0.30} critical Ris only a few% off O 40f  ARs25MO ' negligible
= from value predicted by formula l '\\é:Rs=2.1 MQ
- E 20} 2 T
le : - P RE1OMQ e
I I ST
0.10 : ol K
0.05¢ : e
M : " . s . o | T A
1.9 20 : 21 22 23 24 25 0O 2 4 6 8 10 12
1
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HHC contribution to the dipole Robinson instability revisited

TRobinson 32m° 0°0

3 15r%(=
L~ |2x :El) (1 — —(4)O-Zkrf) % X R.Q cos? 1 sin 21

Erratum: Eq. (45) in M.V. PRAB 21, 114404 (2018) and related eq.’s have an error in the
numerical coefficient (off by few % for parameters of interest).

e Quartic rf potential.

e Robinson from HHC always falls outside the “onion” — no Landau damping
— Both main rf cav and HHC contribute significantly (main cav contributes damping ...)

* Somewhat surprisingly, for fixed Q,
the instability growth rate scales
inversely with R/Q

* Insituations where 1 is closer to 90° than 0 (e.g. for ALS-U current 3HC design
1Y~80°), and for vanishing rf voltage slope we have:

3 2 * Reasonis, everything else being
1 2.1 Vet| cos | l 2 equal, for larger R, the required
X R;Q cos“ 1 sin 2y < R,Q Al S
TRobinson NR g F Q \ R, HHC tuning is achieved farther
g from resonance, where the

Formula is not very accurate but the basic scaling is right instability becomes weaker
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The ALS-U 3HC status: beam-dynamic studies and cavity design

Analytical models are useful but no substitute for simulation work ...

associated with an instability

— Extensive numerical studies being done with elegant
In the range of HHC design-parameters of interest for the ALS-U, we’ve found that overstretching is invariably

— We do not believe that existing theories are adequate at predicting this
— Instability typically saturates into ~steady-state centroid/bunch-length/energy spread oscillations (next slide)

Early on we identified a promising 3HC design with relatively high R,/Q ~ 80Q

Beam equilibrium
from elegant

simulations
(beam loading
from main rf
cavity included)
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— Single cavity, manageable power dissipation
— Avg. bunch length of stable equilibrium somewhat below the design target g, = 15mm
— Unfortunately it doesn’t seem we can control the “overstretching” instability with a LFB
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The “overstretching” instability and a low-R/Q 3HC design option

Bun1c6!1 energy spread vs. 3HC detuning

10 Mﬂ nch ce ntroﬂlmm K Steady-state oscillations
_ 0.5; 3
15 T S 00 I HMM ] i I
= o0 settle in when overstretchin
1. Sl il T, &
1.4} T y -1.0°
— A0 1 . 0 5 105 20 25 3088 Only in simulations where we force
o 13} ° 3
o il high R/Q o °ft”r”f(1°) | all bunches to be identical an
S 1.2 Tl : LFB effective only | —~ zg bunch energy spread | LFB becomes effective, suggesting
I insimplified beam-dynamics 2 50! that £ = 1 plays an important role.
1.1} Ll model S5 7
1 o-ﬁHH‘"‘ ﬂﬁ E I 10 ‘ ‘ e Instability is likely a coupled combination
’ - 0 5 10 15 20 25 30 35
— overstretchmg no. of turns (10°) of £ = 0,1 and azimuthal dipole, quad,
0.9 : ' : :
250 300 350 400 450 500 and possibly higher-order modes
df (kHz)

 Feasibility of alow R,/Q =~ 40Q 3HC design now under study
— Would require 2 cavities
— The “overstretching instability” is still present but now an LFB is found effective at controlling the instability
— Conventional LFB modelled after the system installed in present ALS
— Potential for 25-30% additional (average) Touschek lifetime improvement
— Lower R/Q also helps by reducing transient beam-loading and bunch-to-bunch variations
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Summary

* Robust method for finding equilibrium of arbitrary beam-fill
* Critical R/Q for £ = 1 multi-bunch instability
* Progress report on ongoing ALS-U 3HC studies
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