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•NSLS-II main parameters
•NSLS-II Longitudinal Impedance Budget
•Diagnostic Methods 
•Microwave Instability Threshold & Beam Pattern
•Combined Effect of IBS and Wakefield
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NSLS-II Achieves Design Beam Current 500mA!
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• RF spring has NO contact

• We invested into creating diagnostic and monitoring
devices since we had concern about the localized heating
of the vacuum components, Bellows, RF Contact Spring,
Septum Chamber, Stripline Kicker, Ceramics Chambers.

• IR thermal view cameras and temperature sensors
available around the ring for temperature monitoring

• Available diagnostic helped us in fixing problems and
reaching 500 mA.

• The beam is stable at chromaticity +2/+2 with Transverse
Feedback System “ON”. A 10% gap for ion clearing.

NSLS-II Control Room, Sep.7 2019 

Oct.21 2019



Main NSLS-II Parameters
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Energy 𝐸!(𝐺𝑒𝑉) 3

Revolution period 𝑇!(𝜇𝑠) 2.6

Momentum compaction 𝛼 3.7 x 10-4

RF voltage 𝑉"#(𝑀𝑉) 3.4 (One RF system)

Synchrotron tune 𝜈$ 9.2 x 10-3

BL 1DW 3DW
Energy loss 𝑈(𝑘𝑒𝑉) 287 400 674

Damping time 𝜏% , 𝜏$ (𝑚𝑠) 54, 27 40, 20 23, 11.5

Energy spread 𝜎& 0.5 x 10-3 0.71 x 10-3 0.82 x 10-3

Horizontal Emittance 𝜀% (𝑛𝑚) 2.1 1.4 0.9

Bunch length (at low current) 𝜎' (𝑚𝑚) 2.5 3.5 4
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NSLS-II Longitudinal Impedance Budget
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The longitudinal short-range wakepotential for each individual 
component (multiplied by the number of the components)
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Number of

components
Bellows BLW 218
Large Aperture BPM LABPM 237
Small Aperture BPM (11.5mm x 60mm) SABPMDW 10
Small Aperture BPM (8mm x 55mm) SABPMEPU 3
Damping Wiggler Chamber (11.5mm x 60mm) DW 3
Elliptically Polarized Undulator Chamber (11.5mm x 60mm) EPU1 2
Elliptically Polarized Undulator Chamber (8mm x 55mm) EPU2 2
Gate Valve (Standard) GV 61
Flange Absorber (21mm x 64mm) FABS 67
Flange Absorber S4 (21mm x 64mm) FABSS4 39
Flange Absorber Rest – not included FABS2 7
Stripline (BBF), L=300mm SL300 2
Standard RF Sealed Flanges FLNG 739
EPU RF Sealed Flanges EPUFLNG 4
DW RF Sealed Flanges DWFLNG 13
Direct-Current Current Transformer – not included DCCT 1
Kickers Ti-Coated Ceramics Chambers CCHM 5
RF HOM Damper HOMD 2
500 MHz RF Cavity* CAV 2
RF Tapered Transition TPRDRF 1
RF Flange Absorber (21mm x 64mm) FABSRF 1
Stripline (TMS), L=150mm SL150 2
In-Vacuum Undulator IVU 9



NSLS-II Total Longitudinal Wakefield
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Total longitudinal wakepotential of NSLS-II 
Imaginary part of the longitudinal impedance

Real part of the longitudinal impedance
IR thermal image of the the flange joints

Details of the flange joint 6

RF spring in a special groove

• RW + GdfidL simulated geometric (gm) wakefields for a 0.3mm bunch length.
• Limitation on the single-bunch current result from ~740 RF contact springs design.
• Beam is stable at 500mA within M=1050 bunches (0.5mA/bunch)
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Electron Beam Diagnostic Methods
• In-Vacuum Undulator Radiation Spectrum
• Synchrotron Light Monitor Camera (η5 = 0.13m)
• Pinhole Camera (zero dispersion)
• Beam Spectra Spectra Measurements

• BPM & Stripline Kickers - Network Analyzer
• Infra-Red Optical Extraction Beamline (Large Aperture Dipole Chamber) - THz Schottky-diode detector 
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On axis UR spectrum measured at 7th harmonic of the IVU20 at the CHX NSLS-II beamline

22-IR UHV Optical Extraction Beamline 

O. Chubar

- O. Chubar, C. Kitegi, Y. Chen-Wiegart, D. Hidas, Y. Hidaka, T. Tanabe, G. Williams, J. Thieme,
T. Caswell, M. Rakitin, L. Wiegart, A. Fluerasu, L. Yang, S. Chodankar, M. Zhernenkov,
“Spectrum-Based Alignment of In-Vacuum Undulators in a Low-Emittance Storage Ring”,
Synchrotron Radiation News, Vol.31, No.3, pp.4-8 (2018).

- W. Anders, Proceedings of EPAC1992, Berlin, Germany, 24-28 March 1992. Miriam Brosi and
etc., Phys. Rev. Accel. Beams 22, 020701 – Published 13 February 2019.

- W. Anders, Proceedings of EPAC1992, Berlin, Germany, 24-28 March 1992.

- Y.-C. Chae, L. Emery, A.H. Lumpkin, J. Song, B.X. Yang, Proceedings of the 2001 Particle
Accelerator Conference, Chicago, 2001.
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Energy Spread Dependence on the Lattice 
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𝑉!" = 2.6𝑀𝑉
● The energy spread data estimated from IVU’s spectral

measurements are shown for BL with purple dots, 3DW
with magenta diamonds (SMI beamline) and 3DW with
wine crosses (CHX beamline)

● The dependence of the microwave instability threshold on
the energy spread according to the scaling law I!"#~ασ$%
is shown with the dashed grey line.

● The SLM camera data are presented for three different
lattices, BL (green trace), 1DW (grey trace) and 3DW (blue
trace) at 𝑉&' = 2.6𝑀𝑉. The energy spread is derived
from the horizontal beam size measurements σx(I0).

𝜎# 𝐼$ =
1
𝜂%

𝜎%& 𝐼$ − 𝜀% 𝐼$ 𝛽%

With σ( = 123um , β( = 2.77m, η( = 0.13m and ε( =
0.9nm for the 3DW  - σ) = 0.087%

Eq. (1)
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Microwave Fill-Pattern Measurements
𝑉!" = 1.5𝑀𝑉

Energy spread dependence vs. single-bunch current

The instability threshold currents at different 𝑉!"

• Beam spectra at 𝑉&' = 1.5𝑀𝑉

• 3DW Lattice

• The local minima of the energy spread
as a certain threshold current 𝐼() where
two initially distinct frequencies merge,
which we interpret as classical mode
coupling as first described by Sacherer.

• However we were not able to observe,
experimentally and numerically, the
oscillating frequencies of the longitudinal
modes before the beam becomes
unstable

1.8mA
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3.6mA

4.2mA

2.35kHz 11.2kHz
𝑓! = 2.2𝑘𝐻𝑧

22-IR-2
MET

- A. Blednykh, B. Bacha, G. Bassi, W. Cheng, O. Chubar, A. Derbenev, R. Lindberg,
M. Rakitin, V. Smaluk, M. Zhernenkov, Yu-chen Karen Chen-Wiegart and L. Wiegart,
“New aspects of longitudinal instabilities in electron storage rings”, Scientific Reports
volume 8, Article number: 11918 (2018).
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Energy Spread and Bunch Length Dependence
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10Energy spread vs. single-bunch current

● Energy spread (𝜎*) growth below the microwave
instability threshold (𝐼()) can be explained by the
Intra-Beam Scattering (IBS) effect

● Microwave beam pattern is due to the total
longitudinal wakefield (𝑊||,(-()

● Bunch length measured by the streak camera.
● Tracking with 𝑊||,(-( only shows 𝜎* remains

unchanged at 𝐼. < 𝐼().
● Energy spread and bunch length increase

resulting from the IBS effect has been estimated
by the ibsemittance code.

● IBS + Wakefield need to be simulated
simultaneously!

Bunch length vs. single-bunch current

Experimental Data

Numerically Simulated Data

R. Lindberg
10
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• The IBS effect results in increase the
microwave instability threshold (I!",/0) .

• ELEGANT simulations with 160+ cores using
the element-by-element NSLS-II lattice.

• Significant emittance growth vs. 𝐼.
• TMCI threshold is 0.7mA at chromaticity +2/+2
• The same trend of ε1(𝐼.) growth with and w/o

BBFS below the TMCI threshold

Horizontal emittance vs. single bunch current

Vertical emittance vs. single bunch current

Horizontal beam size vs. single-bunch current

ELEGANT simulations of σ' I$ dependence

Measurements

Particle Tracking

Bunch length vs. single-bunch current

1.2 1.6

- V. Smaluk et al. PHYS. REV. ACCEL. BEAMS 22, 124001 (2019)

𝑉!" = 3𝑀𝑉



Vertical Emittance Growth
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• If ε1 - growth is a cause of the betatron coupling (zero 
vertical dispersion), then:

𝜀*
𝜀*!

=
𝜀%
𝜀%!

- K. Bane et al., in Proceedings of the Particle Accelerator Conference,    Chicago, IL, 
2001 (IEEE, Piscataway, NJ, 2001), p. 2995.

- KUBO, MTINGWA, AND WOLSKI, Phys. Rev. ST Accel. Beams 8, 081001 (2005) 

Experimental results of the normalized emittance for 1% coupling

Betatron coupling

• ε1 - growth at 𝐼. < 1𝑚𝐴 is due to the bettatron coupling.
• ε1 - growth at 𝐼. > 1𝑚𝐴 needs to be further investigated.
• Stabilizing effect of the Transverse Bunch-by-Bunch Feed 

Back System (BBFS) on the single bunch current. 𝐼. > 6𝑚𝐴
with BBFS “On”. Does it effect ε1 at 𝐼. > 1𝑚𝐴 ?

• Adjusting the strength of the skew quadrupole to increase the 
vertical emittance w/o further lattice correction.

• The ratio is not holding for 2% and 3% (vertical dispersion?)
• Insufficient diagnostic resolution at low current.

?

Unstable beam
at 𝐼% > 1.6𝑚𝐴

1% coupling
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Summary
•We have found and cross-checked changes in the electron beam energy

spread at NSLS-II.
•Monotonic energy spread growth, below the microwave instability

threshold, is due to the IBS effect .
•We benchmarked the ELEGANT code using the combined effect of IBS

and 𝑾||,𝒕𝒐𝒕 vs. the experimental data. Particle tracking simulations
confirm the IBS effect on the microwave instability threshold.

•The IBS effect result in increase of 𝝈𝒔 𝑰𝟎 and 𝝈𝜹 𝑰𝟎 .
•All diagnostic methods require the tune-up procedures to perform the

precise measurements. Beam lines and the pinhole cameras need to be
recalibrated before each beam study shift.
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