Combined Effect of IBS and Impedance on the Longitudinal Beam Dynamics Oct. 29, 2020

Alexei Blednykh, BNL/EIC

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Electron-Ion Collider

ENERGY Office of Science

- NSLS-II main parameters
- NSLS-II Longitudinal Impedance Budget
- Diagnostic Methods
- Microwave Instability Threshold & Beam Pattern

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Electron-Ion Collider

Combined Effect of IBS and Wakefield

NSLS-II Achieves Design Beam Current 500mA!

- We invested into creating diagnostic and monitoring devices since we had concern about the localized heating of the vacuum components, Bellows, RF Contact Spring, Septum Chamber, Stripline Kicker, Ceramics Chambers.
- IR thermal view cameras and temperature sensors available around the ring for temperature monitoring
- Available diagnostic helped us in fixing problems and reaching 500 mA.
- The beam is stable at chromaticity +2/+2 with Transverse Feedback System "ON". A 10% gap for ion clearing.

Main NSLS-II Parameters

Energy	$E_0(GeV)$		3	
Revolution period	$T_0(\mu s)$	2.6		
Momentum compaction	α	3.7 x 10 ⁻⁴		
RF voltage	$V_{RF}(MV)$	3.4 (One RF system)		
Synchrotron tune	ν_s	9.2 x 10 ⁻³		
		BL	1DW	3DW
Energy loss	U(keV)	287	400	674
Damping time	$ au_x$, $ au_s$ (ms)	54, 27	40, 20	23, 11.5
Energy spread	σ_δ	0.5 x 10 ⁻³	0.71 x 10 ⁻³	0.82 x 10 ⁻³
Horizontal Emittance	$\varepsilon_x (nm)$	2.1	1.4	0.9
Bunch length (at low current)	$\sigma_{z} (mm)$	2.5	3.5	4

Electron-Ion Collider

1220 8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

NSLS-II Longitudinal Impedance Budget

The longitudinal short-range wakepotential for each individual component (multiplied by the number of the components)

		Number of
		components
Bellows	BLW	218
Large Aperture BPM	LABPM	237
Small Aperture BPM (11.5mm x 60mm)	SABPMDW	10
Small Aperture BPM (8mm x 55mm)	SABPMEPU	3
Damping Wiggler Chamber (11.5mm x 60mm)	DW	3
Elliptically Polarized Undulator Chamber (11.5mm x 60mm)	EPU1	2
Elliptically Polarized Undulator Chamber (8mm x 55mm)	EPU2	2
Gate Valve (Standard)	GV	61
Flange Absorber (21mm x 64mm)	FABS	67
Flange Absorber S4 (21mm x 64mm)	FABSS4	39
Flange Absorber Rest – not included	FABS2	7
Stripline (BBF), L=300mm	SL300	2
Standard RF Sealed Flanges	FLNG	739
EPU RF Sealed Flanges	EPUFLNG	4
DW RF Sealed Flanges	DWFLNG	13
Direct-Current Current Transformer – not included	DCCT	1
Kickers Ti-Coated Ceramics Chambers	ССНМ	5
RF HOM Damper	HOMD	2
500 MHz RF Cavity*	CAV	2
RF Tapered Transition	TPRDRF	1
RF Flange Absorber (21mm x 64mm)	FABSRF	1
Stripline (TMS), L=150mm	SL150	2
In-Vacuum Undulator		9

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

NSLS-II Total Longitudinal Wakefield

Total longitudinal wakepotential of NSLS-II

IR thermal image of the the flange joints

RF spring in a special groove

Real part of the longitudinal impedance

- RW + GdfidL simulated geometric (gm) wakefields for a 0.3mm bunch length.
- Limitation on the single-bunch current result from ~740 RF contact springs design.
 Beam is stable at 500mA within M=1050 bunches (0.5mA/bunch)

Electron-Ion Collider

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Electron Beam Diagnostic Methods

- In-Vacuum Undulator Radiation Spectrum
- Synchrotron Light Monitor Camera ($\eta_x = 0.13m$)
- Pinhole Camera (zero dispersion)
- Beam Spectra Spectra Measurements
 - BPM & Stripline Kickers Network Analyzer
 - Infra-Red Optical Extraction Beamline (Large Aperture Dipole Chamber) THz Schottky-diode detector

On axis UR spectrum measured at 7th harmonic of the IVU20 at the CHX NSLS-II beamline

- O. Chubar, C. Kitegi, Y. Chen-Wiegart, D. Hidas, Y. Hidaka, T. Tanabe, G. Williams, J. Thieme, T. Caswell, M. Rakitin, L. Wiegart, A. Fluerasu, L. Yang, S. Chodankar, M. Zhernenkov, "Spectrum-Based Alignment of In-Vacuum Undulators in a Low-Emittance Storage Ring", Synchrotron Radiation News, Vol.31, No.3, pp.4-8 (2018).

- W. Anders, Proceedings of EPAC1992, Berlin, Germany, 24-28 March 1992. Miriam Brosi and etc., Phys. Rev. Accel. Beams 22, 020701 – Published 13 February 2019.

- W. Anders, Proceedings of EPAC1992, Berlin, Germany, 24-28 March 1992.

- Y.-C. Chae, L. Emery, A.H. Lumpkin, J. Song, B.X. Yang, Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001.

22-IR UHV Optical Extraction Beamline

Electron-Ion Collider

🏁 8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Energy Spread Dependence on the Lattice

- The energy spread data estimated from IVU's spectral measurements are shown for BL with purple dots, 3DW with magenta diamonds (SMI beamline) and 3DW with wine crosses (CHX beamline)
- The dependence of the microwave instability threshold on the energy spread according to the scaling law $I_{th1} \sim \alpha \sigma_{\delta}^3$ is shown with the dashed grey line.
- The SLM camera data are presented for three different lattices, BL (green trace), 1DW (grey trace) and 3DW (blue trace) at $V_{RF} = 2.6MV$. The energy spread is derived from the horizontal beam size measurements $\sigma_x(I_0)$.

$$\sigma_{\delta}(I_0) = \frac{1}{\eta_x} \sqrt{\sigma_x^2(I_0) - \varepsilon_x(I_0)\beta_x} \qquad \text{Eq. (1)}$$

With $\sigma_x=123um$, $\beta_x=2.77m,$ $\eta_x=0.13m$ and $\epsilon_x=0.9nm$ for the 3DW - $\sigma_\delta=0.087\%$

Electron-Ion Collider

1020 8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Microwave Fill-Pattern Measurements

The instability threshold currents at different V_{RF}

- Beam spectra at $V_{RF} = 1.5 MV$
- 3DW Lattice
- The local minima of the energy spread as a certain threshold current I_{th} where two initially distinct frequencies merge, which we interpret as classical mode coupling as first described by Sacherer.
- However we were not able to observe, experimentally and numerically, the oscillating frequencies of the longitudinal modes before the beam becomes unstable

- A. Blednykh, B. Bacha, G. Bassi, W. Cheng, O. Chubar, A. Derbenev, R. Lindberg, M. Rakitin, V. Smaluk, M. Zhernenkov, Yu-chen Karen Chen-Wiegart and L. Wiegart, "New aspects of longitudinal instabilities in electron storage rings", Scientific Reports volume 8, Article number: 11918 (2018).

Electron-Ion Collider

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

Energy Spread and Bunch Length Dependence

- Energy spread (σ_{δ}) growth below the microwave instability threshold (I_{th}) can be explained by the Intra-Beam Scattering (IBS) effect
- Microwave beam pattern is due to the total longitudinal wakefield $(W_{||,tot})$
- Bunch length measured by the streak camera.
- Tracking with $W_{||,tot}$ only shows σ_{δ} remains unchanged at $I_0 < I_{th}$.
- Energy spread and bunch length increase resulting from the IBS effect has been estimated by the ibsemittance code.
- Wakefield IBS + need to simulated be simultaneously!

Electron-Ion Collider

Combined Effect of IBS & Wakefield

Horizontal emittance vs. single bunch current

Vertical emittance vs. single bunch current

the

The same trend of $\varepsilon_v(I_0)$ growth with and w/o **BBFS** below the TMCI threshold **Electron-Ion Collider**

ti, 26-30 October 2020

Vertical Emittance Growth

If ε_y - growth is a cause of the betatron coupling (zero vertical dispersion), then:

$$\frac{\varepsilon_y}{\varepsilon_{y0}} = \frac{\varepsilon_x}{\varepsilon_{x0}}$$

- K. Bane et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, Piscataway, NJ, 2001), p. 2995.

- KUBO, MTINGWA, AND WOLSKI, Phys. Rev. ST Accel. Beams 8, 081001 (2005)

- ε_v growth at $I_0 < 1mA$ is due to the bettatron coupling.
- $\varepsilon_{\rm v}$ growth at $I_0 > 1mA$ needs to be further investigated.
- Stabilizing effect of the Transverse Bunch-by-Bunch Feed Back System (BBFS) on the single bunch current. $I_0 > 6mA$ with BBFS "On". Does it effect ε_v at $I_0 > 1mA$?
- Adjusting the strength of the skew quadrupole to increase the vertical emittance w/o further lattice correction.
- The ratio is not holding for 2% and 3% (vertical dispersion?)
 - Insufficient diagnostic resolution at low current.

Experimental results of the normalized emittance for 1% coupling

Electron-Ion Collider

1020 8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

12

Summary

- We have found and cross-checked changes in the electron beam energy spread at NSLS-II.
- Monotonic energy spread growth, below the microwave instability threshold, is due to the IBS effect .
- We benchmarked the ELEGANT code using the combined effect of IBS and $W_{||,tot}$ vs. the experimental data. Particle tracking simulations confirm the IBS effect on the microwave instability threshold.
- The IBS effect result in increase of $\sigma_s(I_0)$ and $\sigma_\delta(I_0)$.
- All diagnostic methods require the tune-up procedures to perform the precise measurements. Beam lines and the pinhole cameras need to be recalibrated before each beam study shift.

Electron-Ion Collider

Acknowledgments

BNL/NSLS-II

G. Bassi, B. Bacha, T. Shaftan, V. Smaluk, A. Derbenev, O. Chubar, M. Zhernenkov, L. Wiegart.

ANL/APS-U

R. Lindberg, M. Borland

• LNF/INFN

M. Zobov

Electron-Ion Collider

8th Low Emittance Rings Workshop INFN-LNF, Frascati, 26-30 October 2020

14