Comparison of Horizontal- and Vertical-Plane Swap-out Injection Options for APS-U

Michael Borland and Aimin Xiao

8th Low Emittance Rings Workshop
INFN-LNF, Frascati, Italy
26-30 October 2020
Overview

- APS-U lattice requires on-axis swap-out injection due to aggressive tuning for lowest emittance (42 pm)
- APS booster has relatively high emittance
 - At low charge, measure[^1][^2] $\varepsilon_x \approx 70$ nm and $\varepsilon_y \approx 1$ nm
 - High charge could inflate this, but not seen in simulations[^3]
- Normally, beam sizes at injection point are $\sigma_x \approx 600$ μm and $\sigma_y \approx 50$ μm
 - Natural injection scheme is in vertical plane with Lambertson septum
- Lambertson septum is challenging, so horizontal-plane scheme developed with emittance exchange in BTS

[^1]: K. Wootton, private communication.
[^2]: V. Sajaev, private communication.
[^3]: J. Calvey, NAPAC16, 647.
Relevant APS-U performance requirements

- APS-U should need minimal enhancements to existing shielding, requiring
 - Injection efficiency: >95%
 - Beam lifetime: > 3 h @ 200 mA
 - Swapped-out bunches go to a dump inside a longitudinal gradient dipole
- The injection process should not significantly affect beam stability
 - Transient beam motion < 10% of beam size
 - Transient emittance increase < 2%
 - Equivalent to transient brightness drop from replacing one bunch
- Vacuum system requirements
 - > 30 hour gas scattering lifetime
 - Septum (and other special straights) should have ≤10 nT (N₂ equivalent) to limit combined GS lifetime reduction to ~10%
 - Requirement from ion instability is ~3-fold more relaxed

1: B. Micklich, private communication.
2: J. Calvey, private communication.
Vertical-plane injection scheme is the default for APS-U

- Vertical-plane injection was first scheme developed, largely to accommodate booster horizontal emittance (nominally $\varepsilon_x \approx \varepsilon_0 \approx 60$ nm)
- Lambertson septum parameters
 - 1.78 m, 0.95 T, and a ~2-mm blade.
 - Rolled slightly so beam path clears poles and coils in Q1 and Q2
- Injection kickers also send depleted bunch to the swap-out dump

1: A. Xiao et al., IPAC18.
Horizontal-plane injection now seems feasible

- Challenging Lambertson septum1 needed for vertical-plane injection2
 - Modeling this magnet pushes the limits of 3D OPERA
 - Unexpectedly high leakage field could have negative consequences
 - Rotation of this magnet makes BTS line alignment a challenge
 - Many manufacturing and design challenges, e.g., vacuum pumping

- Seemed to be no alternative, but horizontal scheme now seems workable
 - Simple x-y emittance exchange gives small horizontal emittance3
 - Can obtain much higher pulser voltages than originally thought possible
 - E.g., ± 27 kV instead of ± 15 kV “limit” established early in APS-U project
 - Conventional pulsed septum magnet can reach well above 1 T4
 - APS has several high-quality pulsed septa, but limited to 0.74 T

1 M. Abliz et al., NIM A 886, 7-12 (2018).
2 A. Xiao et al., IPAC18.
3 P. Kuske et al., IPAC 2016, 2028.
4 M. Paraliev, https://doi.org/10.23730/CYRSP-2018-005.33
Injection region features similar components

- Stripline kickers identical, but rotated 90 deg as appropriate – more challenging synchrotron radiation shielding for H-Inj
- Septa are different in length, strength, aperture and location
 - H-Inj: off-centered stored beam chamber, septum inner edge x=-3 mm
 - V-Inj: ±4mm(h) by ±3mm(v), centered stored beam chamber (NEG coated)
- Incoming beam is off center in Q1 and Q2
 - H-Inj: larger H offset, giving weaker effects from stray fields
 - V-Inj: smaller H offset + vertical offset → tight aperture limitations
Both schemes optimized using similar approach

- Injected beam is “hemmed in” by the septum on one side and the striplines on the other
 - Stronger kickers may require increasing the minimum stripline aperture
 - Voltage requirement not necessarily a simple linear function assumed kick angle
 - A thicker septum requires higher kicker voltage for fixed stored-beam aperture

- In addition to fitting incoming beam into the DA, provided margin for error and jitter
 - Designed for 0.5-mm margin between 3-σ edge of beam and any physical aperture

- Also constrained by downstream kicker blade and swap-out dump geometry for depleted bunch
Injection straight optimization

- **H-Injection**
 - Beam\(^1\) (after emittance exchange)
 \[\varepsilon_x/\varepsilon_y = 16/60 \text{ nm}\]
 \[\sigma_x/\sigma_y (\text{at ID}) = 0.288/0.379 \text{ mm}\]
 - Stripline kicker (optimized for H-Inj)
 0.752 m long, \(\pm 4.95 \text{ mm gap}\)
 - Kicker voltages
 \(\pm 22.6 \text{ kV}\)
 - Septum (pulsed)
 1.5 m, 1.4 T, 3 mm blade
 Inner edge \(x = -3 \text{ mm}\)

- **V-Injection**
 - Beam\(^1\)
 \[\varepsilon_x/\varepsilon_y = 60/16 \text{ nm}\]
 \[\sigma_x/\sigma_y (\text{at ID}) = 0.559/0.196 \text{ mm}\]
 - Stripline kicker
 0.752 m long, \(\pm 4.95 \text{ mm gap}\)
 - Kicker voltages
 \(\pm 19.5/25/25 \text{ kV}\)
 - Septum (DC)
 1.78 m, 0.95 T, 2.5 mm blade
 Inner edge \(y = 3 \text{ mm}\)
 Rotation angle: 104 mrad

1: Design based on assumed partitioning of booster natural emittance between the planes
Swap-out dump inside S40A:M1 magnet

- Similar swap-out dump for both injection schemes:
 ±4.6 mm aperture, rotated 90 deg depending on the injection plane

- **V-Inj:**
 - To avoid hitting vacuum chamber before the dump, little flexibility for kicker strength adjustment
 - Depleted bunch hits fairly close to the outer edge of the dump

- **H-Inj:**
 - Beam impacts surface of dump well away from vacuum chamber wall thanks to lower beta function
Leakage field of Lambertson is mostly self-compensating1,2

<table>
<thead>
<tr>
<th>n</th>
<th>b_n (T/mm$^{n-1}$)</th>
<th>a_n (T/mm$^{n-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.456</td>
<td>0.482</td>
</tr>
<tr>
<td>1</td>
<td>4.6×10^{-2}</td>
<td>0.1748</td>
</tr>
<tr>
<td>2</td>
<td>1.7×10^{-2}</td>
<td>-6.5 $\times 10^{-3}$</td>
</tr>
<tr>
<td>3</td>
<td>1.1×10^{-3}</td>
<td>1.6×10^{-3}</td>
</tr>
<tr>
<td>4</td>
<td>5.5×10^{-4}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>5</td>
<td>9.3×10^{-5}</td>
<td>-5.7×10^{-5}</td>
</tr>
</tbody>
</table>

Manageable with nearby correctors

Concern: will the self-compensation work as predicted by OPERA?

First-article Lambertson septum is being built by FNAL for APS-U

Septum in-vacuum bottom pole with slot for VP-shielded, water-cooled stored-beam chamber. Spacers are to protect against damage during shipping.

1: M. Abliz \textit{et al.}, NIM A 886, 7-12 (2018).
2: M. Abliz, private communication.
Lambertson leakage field has impact on DA/LMA

- Recent simulation results show that larger-than-expected leakage field will have negative impact on dynamic and local momentum acceptance
- The impact is not dramatic for 4-fold increase in leakage field (all terms)
 - 9-fold increase will reduce Touschek lifetime
- Awaiting completion of prototype and measurements to understand if there is an issue
Lambertson is challenging measure

- Measurement of the Lambertson leakage field is challenging due to length and small (±4mm by ±3mm) stored-beam aperture
- Plan is to measure 3D magnetic field map, then use generalized gradient expansion1,2 for particle tracking

Lambertson stored-beam-chamber field mapping concept (M. Kasa, J. Liu ANL).

Pulsed H-Inj septum requirements achievable

- APS has a high-quality pulsed direct-drive septum\(^1\), but field is only 0.74 T
- APS-U needs much stronger field to ensure
 - Tolerable effect from “stray” fields of S39B:Q1, S39B:Q2
 - BTS magnets clear the ring
- M. Jaski developed 1.4-T design with 3-mm blade
 - Direct-drive with iron shield tube to reduce leakage fields
 - Allows clearing other ring components, even when stray fields are included
 - Large shield tube diameter reduces concerns about vacuum quality
 - Well received at recent detailed review

\(^1\) M. Jaski et al., PAC01, 3230.
Pulsed septum leakage field initially looked unacceptable

- Initially, a simple half-sinusoidal drive waveform was used
- Resulted in a spike in the leakage field, which was very hard to compensate
- Adding a taper on the end of the drive pulse eliminated this issue
Pulsed septum leakage field appears manageable

- Leakage field can have transient impact on beam emittance, position
 - Want brightness reduction of ~2% or less due to septum leakage
 - Same as swapping in high-emittance booster bunch (48 bunch mode)
 - Want beam motion of less than 10% of beam size

- Using data from time-dependent magnet model (M. Jaski), simulations show we can compensate for leakage field, but need AFG-driven power supplies
 - Since this was done, modified design to give even smaller leakage

SS-LPF: 22-kHz stair-step waveform from orbit feedback system in feedforward mode, with 10-kHz low-pass filter from corrector and chamber

LPF: inverted replica of leakage waveform, with 10-kHz low-pass filter

1: M. Jaski, private communication.
Emittance exchange is surprisingly easy

- Exchanging x-y emittances possible with 5 skew quads

- Transport matrix has a convenient form, with L the system length

\[M = \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \quad \quad D = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \]

- A ~5-m space is sufficient even at 6 GeV

- Conveniently, BTS has a ~15-m zero-dispersion region available

From P. Kuske and F. Kramer, IPAC 2016, 2028. See also M. Aiba, IPAC15, 1716.
BTS design with EXS is very reasonable-looking

- EXS built from six identical quads for simplicity
- New quads are strong (up to 61 T/m), but BSC is <10mm, so not a problem
- Included significant stray field effects of Q2 and Q1 magnets, based on OPERA-generated field maps
Both schemes have similar overall performance

- H-plane injection efficiency simulation initially disappointing, but improved with revised MOGA
 - Usual 12 sextupole families around the ring
 - 6 sextupole knobs on each side of injection point
- Both schemes now very similar when evaluated with 100 post-commissioning ensembles

N.B. These results use an earlier Lambertson septum model than those on slide 12.
Injection systems aim to include everything

- Injection simulations are performed with parallel ELEGANT using gaussian-weighted uniform distributions covering $\pm 4\sigma$

- Simulations include errors in booster and BTS, e.g.,
 - Orbit variation
 - Pulsed power supply jitter
 - Magnet strength errors

- Also included are physical apertures of the transport line, septum, injection kickers, etc.

- For H-Inj scheme, did a second round including uncompensated time-dependent leakage multipoles
 - No significant effect was seen
Conclusions

- Developed both horizontal- and vertical-plane injection schemes for APS-U
 - Very similar expected performance

- For vertical-plane injection, challenges include
 - Obtaining and verifying acceptably low leakage field of septum
 - Modeling effects of measured leakage fields
 - Achieving good vacuum pressure in the small stored-beam chamber
 - Alignment of BTS line with numerous rolled elements
 - Tighter aperture constraints

- For horizontal-plane injection, challenges include
 - Controlling the injection transient from strong pulsed septum’s leakage field
 - Many new, strong quadrupoles and skew quadrupoles
 - Shielding stripline blades from synchrotron radiation

- Overall, the horizontal-plane scheme seems less difficult, but vertical scheme may win on cost and schedule if no show-stoppers are found
Acknowledgments

- Thanks to M. Abliz, J. Downey, A. Jain, M. Jaski, M. Kasa, J. Liu, J. Wang --- magnet design, PS design, magnetic measurement, mechanical design.
- G. Decker, V. Sajaev, U. Wienands --- H/V risk, simulation, Zone F. etc.
- Simulation codes
 - Serial and parallel versions of ELEGANT1,2 and related tools3
 - OPERA 3D
- Computations used ANL's Blues and Bebop clusters, ASD's Weed cluster

1: M. Borland, LS-287.
2: Y. Wang et al., AIP Conf. Proc 877.
3: M. Borland et al., IPAC2003.