

Comparison of Horizontal- and Vertical-Plane Swap-out Injection Options for APS-U

Michael Borland and Aimin Xiao

8th Low Emittance Rings Workshop INFN-LNF, Frascati, Italy 26-30 October 2020

Overview

- APS-U lattice requires on-axis swap-out injection due to aggressive tuning for lowest emittance (42 pm)
- APS booster has relatively high emittance
 - At low charge, measure^{1,2} $\varepsilon_x \approx 70$ nm and $\varepsilon_v \approx 1$ nm
 - High charge could inflate this, but not seen in simulations³
- Normally, beam sizes at injection point are σ_x ≈600 µm and σ_v ≈50 µm
 - Natural injection scheme is in vertical plane with Lambertson septum
- Lambertson septum is challenging, so horizontal-plane scheme developed with emittance exchange in BTS —

1: K. Wootton, private communication. 2: V. Sajaev, private communication.

2. v. Sajaev, private communicati 3: J. Calvey, NAPAC16, 647.

Relevant APS-U performance requirements

- APS-U should need minimal enhancements to existing shielding, requiring¹
 - Injection efficiency: >95%
 - Beam lifetime: > 3 h @ 200 mA
 - Swapped-out bunches go to a dump inside a longitudinal gradient dipole
- The injection process should not significantly affect beam stability
 - Transient beam motion < 10% of beam size
 - Transient emittance increase < 2%
 - Equivalent to transient brightness drop from replacing one bunch
- Vacuum system requirements
 - > 30 hour gas scattering lifetime
 - Septum (and other special straights) should have ≤10 nT (N₂ equivalent) to limit combined GS lifetime reduction to ~10%
 - Requirement from ion instability is ~3-fold more relaxed²

B. Micklich, private communication.
 J. Calvey, private communication.

Vertical-plane injection scheme is the default for APS-U¹

- Vertical-plane injection was first scheme developed, largely to accommodate booster horizontal emittance (nominally E_x≈E₀≈60 nm)
- Lambertson septum parameters
 - 1.78 m, 0.95 T, and a ~2-mm blade.
 - Rolled slightly so beam path clears poles and coils in Q1 and Q2
- Injection kickers also send depleted bunch to the swap-out dump

1: A. Xiao et al., IPAC18.

Horizontal-plane injection now seems feasible

- Challenging Lambertson septum¹ needed for vertical-plane injection²
 - Modeling this magnet pushes the limits of 3D OPERA
 - Unexpectedly high leakage field could have negative consequences
 - Rotation of this magnet makes BTS line alignment a challenge
 - Many manufacturing and design challenges, e.g., vacuum pumping
- Seemed to be no alternative, but horizontal scheme now seems workable
 - Simple x-y emittance exchange gives small horizontal emittance³
 - Can obtain much higher pulser voltages than originally thought possible
 - E.g., ± 27 kV instead of ± 15 kV "limit" established early in APS-U project
 - Conventional pulsed septum magnet can reach well above 1 T 4
 - APS has several high-quality pulsed septa, but limited to 0.74 T

M. Abliz *et al.*, NIM A 886, 7-12 (2018).
 A. Xiao *et al.*, IPAC18.
 P. Kuske *et al.*, IPAC 2016, 2028.
 M. Paraliev, https:///doi.org/10.23730/CYRSP-2018-005.33

Injection region features similar components

- Stripline kickers identical, but rotated 90 deg as appropriate more challenging synchrotron radiation shielding for H-Inj
- Septa are different in length, strength, aperture and location
 - H-Inj: off-centered stored beam chamber, septum inner edge x=-3 mm
 - V-Inj: ±4mm(h) by ±3mm(v), centered stored beam chamber (NEG coated)
- Incoming beam is off center in Q1 and Q2
 - H-Inj: larger H offset, giving weaker effects from stray fields
 - V-Inj: smaller H offset + vertical offset \rightarrow tight aperture limitations

Both schemes optimized using similar approach

- Injected beam is "hemmed in" by the septum on one side and the striplines on the other –
 - Stronger kickers may require increasing the minimum stripline aperture
 - Voltage requirement not necessarily a simple linear function assumed kick angle
 - A thicker septum requires higher kicker voltage for fixed stored-beam aperture
- In addition to fitting incoming beam into the DA, provided margin for error and jitter
 - Designed for 0.5-mm margin between 3-σ
 edge of beam and any physical aperture
- Also constrained by downstream kicker blade and swap-out dump geometry for depleted bunch

Injection straight optimization

H-Injection

- Beam¹ (after emittance exchange) $\epsilon_x/\epsilon_y=16/60 \text{ nm}$
 - σ_x/σ_y (at ID)=0.288/0.379 mm
- Stripline kicker (optimized for H-Inj)
 0.752 m long, ±4.95 mm gap
- Kicker voltages
 ±22.6 kV
- Septum (pulsed)
 1.5 m, 1.4 T, 3 mm blade
 Inner edge x=-3 mm

V-Injection

- Beam¹
 - ϵ_x/ϵ_y =60/16 nm
 - σ_x/σ_y (at ID)=0.559/0.196 mm
- Stripline kicker
 0.752 m long, ±4.95 mm gap
- Kicker voltages
 ±19.5/25/25 kV
- Septum (DC)
- <mark>1.78 m</mark>, 0.95 T, 2.5 mm blade Inner edge y=3 mm Rotation angle: 104 mrad

1: Design based on assumed partitioning of booster natural emittance between the planes

Swap-out dump inside S40A:M1 magnet

- Similar swap-out dump for both injection schemes:
- ±4.6 mm aperture, rotated 90 deg depending on the injection plane
- V-Inj:
 - To avoid hitting vacuum chamber before the dump, little flexibility for kicker strength adjustment
 - Depleted bunch hits fairly close to the outer edge of the dump
- H-Inj:
 - Beam impacts surface of dump well away from vacuum chamber wall thanks to lower beta function

Leakage field of Lambertson is mostly self-compensating^{1,2}

n	b _n (T/mm ⁿ⁻¹)	a _n (T/mm ⁿ⁻¹)	_
0	-0.456	0.482	
1	4.6 x 10 ⁻²	0.1748	
2	1.7 x 10 ⁻²	-6.5 x 10 ⁻³	-
3	1.1 x 10 ⁻³	1.6 x 10 ⁻³	
4	5.5 x 10 ⁻⁴	1.5 x 10 ⁻⁵	
5	9.3 x 10 ⁻⁵	-5.7 x 10 ⁻⁵	

anageable th nearby rrectors

Septum in-vacuum bottom pole with slot for VP-shielded, water-cooled stored-beam chamber. Spacers are to protect against damage during shipping.

1: M. Abliz et al., NIM A 886, 7-12 (2018). 2: M. Abliz, private communication.

DNATIONAL LABORATORY

M. Borland et al., Comparison of Horizontal- And Vertical-Plane Swap-out Injection Options for APS-U, LER2020, Frascati, Italy 10

Concern: will the

self-compensation

work as predicted

by OPERA?

Lambertson leakage field has impact on DA/LMA

- Recent simulation results show that larger-than-expected leakage field will have negative impact on dynamic and local momentum acceptance
- The impact is not dramatic for 4-fold increase in leakage field (all terms)
 - 9-fold increase will reduce Touschek lifetime
- Awaiting completion of prototype and measurements to understand if there is an issue

M. Borland et al., Comparison of Horizontal- And Vertical-Plane Swap-out Injection Options for APS-U, LER2020, Frascati, Italy

Lambertson is challenging measure

- Measurement of the Lambertson leakage field is challenging due to length and small (±4mm by ±3mm) stored-beam aperture
- Plan is to measure 3D magnetic field map, then use generalized gradient expansion^{1,2} for particle tracking

Lambertson stored-beam-chamber field mapping concept (M. Kasa, J. Liu ANL).

3-axis Hall probe will ride on flexible linear encoder scale.

Similar concept used for superconducting undulator measurements

M. Venturini et al., NIM A 437, 387 (1999).
 C. Mitchell et al., Rev. Mod. Phys. 13 (6) (2010).

M. Borland et al., Comparison of Horizontal- And Vertical-Plane Swap-out Injection Options for APS-U, LER2020, Frascati, Italy

Pulsed H-Inj septum requirements achievable

- APS has a high-quality pulsed direct-drive septum¹, but field is only 0.74 T
- APS-U needs much stronger field to ensure
 - Tolerable effect from "stray" fields of S39B:Q1, S39B:Q2
 - BTS magnets clear the ring
- M. Jaski developed 1.4-T design with 3-mm blade
 - Direct-drive with iron shield tube to reduce leakage fields
 - Allows clearing other ring components, even when stray fields are included
 - Large shield tube diameter reduces concerns about vacuum quality
 - Well received at recent detailed review

1: M. Jaski et al., PAC01, 3230.

Pulsed septum leakage field initially looked unacceptable

- Initially, a simple half-sinusoidal drive waveform was used
- Resulted in a spike in the leakage field, which was very hard to compensate
- Adding a taper on the end of the drive pulse eliminated this issue

Pulsed septum leakage field appears manageable

- Leakage field can have transient impact on beam emittance, position
 - Want brightness reduction of ~2% or less due to septum leakage
 - Same as swapping in high-emittance booster bunch (48 bunch mode)
 - Want beam motion of less than 10% of beam size
- Using data from time-dependent magnet model (M. Jaski), simulations show we can compensate for leakage field, but need AFG-driven power supplies
 - Since this was done, modified design to give even smaller leakage¹

SS-LPF: 22-kHz stair-step waveform from orbit feedback system in feedforward mode, with 10-kHz low-pass filter from corrector and chamber

LPF: inverted replica of leakage waveform, with 10-kHz low-pass filter

1: M. Jaski, private communication.

M. Borland et al., Comparison of Horizontal- And Vertical-Plane Swap-out Injection Options for APS-U, LER2020, Frascati, Italy

Emittance exchange is surprisingly easy

Exchanging x-y emittances possible with 5 skew quads

From P. Kuske and F. Kramer, IPAC 2016, 2028. See also M. Aiba, IPAC15, 1716.

Transport matrix has a convenient form, with L the system length

$$M = \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \qquad \qquad D = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$

A ~5-m space is sufficient even at 6 GeV

Conveniently, BTS has a ~15-m zero-dispersion region available

BTS design with EXS is very reasonable-looking

- EXS built from six identical quads for simplicity
- New quads are strong (up to 61 T/m), but BSC is <10mm, so not a problem
- Included significant stray field effects of Q2 and Q1 magnets, based on OPERA-generated field maps

Name	Type	Length	K1	B1
		m	$1/m^2$	T/m
BTS:AQ1	ExistingQuad	0.600	-0.597462	11.958
BTS:AQ2	ExistingQuad	0.600	0.592357	-11.855
BTS:AQ3	ExistingQuad	0.600	-0.568960	11.387
BTS:AQ4	ExistingQuad	0.600	0.568699	-11.382
BTS:AQ5	ExistingQuad	0.600	-0.335412	6.713
BTS:BQ1	ExistingQuad	0.600	0.207413	-4.151
BTS:BQ2	ExistingQuad	0.600	-0.825225	16.516
BTS:BQ3	ExistingQuad	0.600	0.700285	-14.015
BTS:BQ4	ExistingQuad	0.600	-0.932897	18.671
BTS:BQ5	ExistingQuad	0.600	0.936638	-18.746
BTS:CQ1	NewQuad	0.350	1.359336	-27.206
BTS:CQ2	NewQuad	0.350	-2.844626	56.932
BTS:CQ3	NewQuad	0.350	-0.250803	5.020
BTS:DQ1	NewQuad	0.350	3.047466	-60.992
BTS:DQ2	NewQuad	0.350	-2.809669	56.232
$\mathbf{EXQ1}$	SkewQuad	0.544	-1.779322	35.611
$\mathrm{EXQ2}$	SkewQuad	0.544	2.500000	-50.035
$\mathbf{EXQ3}$	SkewQuad	0.544	-2.267343	45.378

Both schemes have similar overall performance

- H-plane injection efficiency simulation initially disappointing, but improved with revised MOGA
 - Usual 12 sextupole families around the ring
 - 6 sextupole knobs on each side of injection point
- Both schemes now very similar when evaluated with 100 post-commissioning ensembles

N.B. These results use an earlier Lambertson septum model than those on slide 12.

Injection systems aim to include everything

- Injection simulations are performed with parallel ELEGANT using gaussian-weighted uniform distributions covering ±4σ
- Simulations include errors in booster and BTS, e.g.,
 - Orbit variation
 - Pulsed power supply jitter
 - Magnet strength errors
- Also included are physical apertures of the transport line, septum, injection kickers, etc.
- For H-Inj scheme, did a second round including uncompensated time-dependent leakage multipoles⁻⁻
 - No significant effect was seen

Conclusions

- Developed both horizontal- and vertical-plane injection schemes for APS-U
 - Very similar expected performance
- For vertical-plane injection, challenges include
 - Obtaining and verifying acceptably low leakage field of septum
 - Modeling effects of measured leakage fields
 - Achieving good vacuum pressure in the small stored-beam chamber
 - Alignment of BTS line with numerous rolled elements
 - Tighter aperture constraints
- For horizontal-plane injection, challenges include
 - Controlling the injection transient from strong pulsed septum's leakage field
 - Many new, strong quadrupoles and skew quadrupoles
 - Shielding stripline blades from synchrotron radiation
- Overall, the horizontal-plane scheme seems less difficult, but vertical scheme may win on cost and schedule if no show-stoppers are found

Acknowledgments

- Thanks to M. Abliz, J. Downey, A. Jain, M. Jaski, M. Kasa, J. Liu, J. Wang ---magnet design, PS design, magnetic measurement, mechanical design.
- G. Decker, V. Sajaev, U. Wienands --- H/V risk, simulation, Zone F. etc.
- Simulation codes
 - Serial and parallel versions of ELEGANT^{1,2} and related tools³
 - OPERA 3D
- Computations used ANL's Blues and Bebop clusters, ASD's Weed cluster

M. Borland, LS-287.
 Y. Wang et al., AIP Conf. Proc 877.
 M. Borland et al., IPAC2003.

