Low Emittance Lattice Design in Synchrotron Light Sources by Using Complex Bends

GM. Wang, *T. Shaftan, V. Smaluk, Y. Hidaka, F. Plassard, Y. Li, S. Sharma, T. Tanabe, B. Kosciuk* NSLS-II, Brookhaven National Lab 26-30 October 2020, INFN-LNF 8th Low Emittance Rings Workshop

Outline

- Introduction
- From Double-Bend Achromat to Multi-Bend Achromat lattice
- Complex Bend
 - Properties of the element
 - Integration into lattice design
 - Magnet design
 - Prototype of Complex Bend
- Summary

Introduction

NSLS II overview

- National Synchrotron Light Source (NSLS-II) is a new 3 GeV, 500 mA, high-brightness synchrotron light source facility at the Brookhaven National Laboratory, funded U.S. Department of Energy (DOE).
- SR commissioning started in later March 2014
- Top off routine operation started in October 2015
- 29 beamlines in top off operation at 400 mA
- Demonstrated 500 mA in Oct. 2019

Office of

Science

- Brightness/coherence (→ Low emittance) are essential to enable nanoscale resolution and fast dynamics study into sub-millisecond regime
- NSLS-II accelerator consists of a 200 MeV Linac, a full energy Booster and 3 GeV Storage Ring
- SR circumference is 792 m with 0.9 nm-rad horizontal and 8 pm-rad vertical emittance.

BROOKHAVEN

NATIONAL LABORATORY

• 15 long (9.3m) and 15 short (6.6m) straight sections

One super-period SR Lattice function

4

Synchrotron light source: today and tomorrow

- Two order magnitude of emittance reduction: increasing brightness and coherence
- Transition from Double- and Triple-Bend Achromats to Multi-Bend Achromats
- All MBA-based projects consider significant increase of N_d

From DBA to MBA

- Trend of minimizing emittance of modern storage rings translates into reduction of η_x and β_x in their lattice dipoles
- Further reduction of emittance leads to dense and complex MBA lattices
- An alternative solution, Complex Bend (CB): preserve substantial room for SR lattice elements

1. P.F.Tavares et al., J. Synchrotron Radiat. 21 (2014) 862-877.

2. P.F.Tavares et al., J. Electron. Spectrosc. Relat. Phenom.224 (2018) 8-16.

Complex bend: Properties of the element

- •Properties of the element
- Integration into lattice design
- Magnet design
- •Prototype of Complex Bend

$$\varepsilon_x = F \frac{E^2}{J_x N_d^3} \stackrel{CB}{\Rightarrow} F \frac{E^2}{J_x [N_d N_p]^3}$$

Transition from individual dipoles to multiple dipole poles

- APS DBA: 40x2=80 dipoles→
- APS-U MBA: 40x7=280 dipoles→
- NSLS-II upgrade: 30x2x10=600 poles

Complex Bend concept

- Complex Bend: a bending element consisting of dipole poles, interleaved with strong focusing and defocusing quadrupole poles, QF-D-B-D-QD-D-B-D (CB)
- Conventional long dipole \rightarrow a sequence of short strong focusing poles
- Produce small beta-function and dispersion, resulting in substantially emittance reduction

T. Shaftan

Analytic results of Complex Bend

Length of 1 cell

$$L_{CB} = 2(L_Q + L_B + 2L_D)$$

$$k_{CB} = \frac{2\pi}{L_{CB}}$$

Beta function

$$\beta_x(s) \approx \overline{\beta_x} - \Delta \beta_x \cos(k_{CB}s)$$

Dispersion

$$\eta_x(s) \approx \overline{\eta_x} - \Delta \eta \cos(k_{CB}s)$$

Analytic expressions of $\overline{\beta_x}$, $\Delta\beta_x$ and $\overline{\eta_x}$, $\Delta\eta_x$ have been derived for $K_{1F} = -K_{1D} = K_1$

Emittance

$$\varepsilon_x \approx C_q \gamma^2 \frac{\overline{\eta}_x^2}{R_B \overline{\beta}_x}$$

Chromaticity

$$\xi \approx -\frac{N_p}{\pi} K_1 \frac{\Delta \beta}{k_{CB}} \sin\left(\frac{k_{CB} L_Q}{2}\right)$$

Complex bend vs DBA

A Complex Bend magnet (10 periods): same total bending angle and length as NSLS-II dipole results in **70 pm-rad** emittance, 30 times lower emittance than NSLS-II DBA lattice

- Reach 13 pm-rad emittance with 4.5 m CB
- Very strong quadrupole magnets (hundreds T/m) → ~1 mm horizontal shift introduce required dipole field

	NSLS-II dipole	Complex bend I	
Length, m	2.6	2.6 (0.26 per cell)	
Bending field, T	0.4	1.05	
Bending angle, rad	0.105	0.105	
<i>K</i> ₁ , m ⁻²	0	+100 /80	
eta_{max} / eta_{min} , m	3.7 / 0.7	0.42 / 0.24	
η_{max} / η_{min} , mm	137 / 0	4.7 / 3.6	
Emittance, nm	2.09	0.07	

Evolution to CB II and CB III

- CB II&III: offer substantially reduce the device length by removing the dipole poles
- CB II Bending: shift the quadrupole poles offset
- CB III Bending: PMQ installed into a wide gap of the conventional electromagnet

1.5 cells of CBII geometry

Permanent Quads inside an electromagnet dipole for CBIII

G. Wang, T. Shaftan, V. Smaluk et al., Complex Bend II: A new optics solution, Phys. Rev. Accel. Beams 22, 110703, 2019

yni oour 60 11

Stability constraint of ring beam dynamics

- Quads in dipole: synchrotron integral I_4 , dominated from quads K_1 in each pole \rightarrow specific condition to maintain positive partition numbers $J_{x/z}$
- Ring can be stable if the relationship between the B fields of focusing and defocusing poles is satisfied

$$I_{4} = \oint \frac{\eta}{\rho} (\frac{1}{\rho^{2}} + 2K_{1}) ds \qquad I_{2} = \oint \frac{ds}{\rho^{2}}$$
$$J_{x} = 1 - \frac{I_{4}}{I_{2}}, \qquad J_{z} = 2 + \frac{I_{4}}{I_{2}}, \qquad \varepsilon_{x} = F \frac{E^{2}}{J_{x} [N_{d} N_{p}]^{3}}$$

Periodic structure case, $N_F = N_D = N_Q$, $L_F = L_D = L_Q$

$$I_4 \approx \frac{N_p 2\eta_{Fav} K_{1F} L_Q}{\rho_{Fav}^3} - \frac{N_p 2\eta_{Dav} K_{1D} L_Q}{\rho_{Dav}^3}$$

Theorem: stability condition to maintain positive partition numbers $\eta_{Fav}K_{1F}^2B_{Fav}^3 + \eta_{Dav}K_{1D}^2B_{Dav}^3 \approx 0$

G. Wang, T. Shaftan, V. Smaluk et al., Complex Bend II: A new optics solution, Phys. Rev. Accel. Beams 22, 110703, 2019

ght Source II

Complex bend: Integration into lattice design

•Properties of the element

Integration into lattice design

Magnet design

Prototype of Complex Bend

DCBA lattice and TCBA lattice

DCBA lattice for NSLS-IIU: 25 pm-rad

- Similar elements layout as NSLS-II
- Comparable space as DBA lattice for SR other elements
- 2*11 poles CB with gradient ~ 105 T/m
- Phase advance cancellation over one super cell, $\Delta \psi_x = 7\pi$, $\Delta \psi_y = 5\pi$ between sextpoles
- 5 chromatic sextupoles per cell to control chromaticity ($K_2L < 75 \text{ 1/m}^2$)
- 7 mm*1.5 mm (x/y) dynamic aperture, sufficient for the off-axis anti-septum¹ injection

- Three CBs to control dispersion: dispersion bump and dispersion suppression
- Two edge CBs' with lower gradient, thus large physical aperture for ID radiation extraction
- Middle CB (G ~100 T/m) focusing poles with no bending to minimize emittance
- Phase advance within one cell, $\Delta \psi_x = 3\pi$, $\Delta \psi_y = \pi$ between sextupoles
- Two dispersion bumps per cell with 3 families of chromatic sextupoles to control chromaticity $(K_2L < 50 \text{ 1/m}^2)$
- Long/short straight structure with zero dispersion: insertion devices, RF cavity, injection
- Lattice was optimized (beta, phase, setupole strength) to provide a self-cancellation of geometric Resonant Driving Terms (RDTs) h_{jklm} (j+k+l+m=3) from chromatic sextupoles. Will consider to implement harmonic sextupoles

BROOKHAVEN

TCBA lattice: main parameters

Property	Values
Beam Energy E [GeV]	3
Natural Horizontal Emittance ϵ_x [pm-rad]	34.4
Damping Partitions (J_x, J_y, J_δ)	(1.92, 1.00, 1.08)
Damping Times $(\tau_x, \tau_y, \tau_\delta)$ [ms]	(25.98, 50.01, 46.52)
Ring Tunes (ν_x, ν_y)	(85.180, 22.140)
Natural Chromaticities $(\xi_x^{\text{nat}}, \xi_y^{\text{nat}})$	(-215.187, -198.267)
Corrected Chromaticities $(\xi_x^{\text{cor}}, \xi_y^{\text{cor}})$	(+2.366, +2.625)
Momentum Compaction α_c	6.25×10^{-5}
Energy Loss per Turn U_0 [keV]	317
Energy Spread σ_{δ} [%]	0.076
(β_x, β_y) at Long-Straight Center [m]	(19.82, 3.09)
(β_x, β_y) at Short-Straight Center [m]	(0.22, 2.30)
$\max(\beta_x, \beta_y)$ [m]	(24.98, 32.26)
min (β_x, β_y) [m]	(0.20, 0.53)
$\eta_x \pmod{\max} [\text{mm}]$	(-0.1, +71.9)
Length of Long Straight $L_{\rm LS}$ [m]	7.020
Length of Short Straight $L_{\rm SS}$ [m]	4.220
Circumference C [m]	792.000
Circumference Change $\Delta C/C$ [%]	+0.005
Number of Super-periods	15
Source Point Diff. at LS $(\Delta x, \Delta z)$ [mm]	(-3.79, +22.89)
Source Point Diff. at SS $(\Delta x, \Delta z)$ [mm]	(+15.34, +15.05)
Revolution Frequency $f_{\rm rev}$ [kHz]	378.526

TCBA lattice: higher order correction

- The lattice performance is strongly limited by higher order effects from the sextupoles, especially amplitude dependent tune shift (ADTS) terms
- Octupoles are used here to correct large linear ADTS
- The strength of 3 octupole families are calculated from solving the linear system to cancel for the horizontal, vertical and cross term of linear amplitude detuning
- Oct[H, V, C] are placed in the lattice with large $\frac{\beta_x}{\beta_y}$, large $\frac{\beta_y}{\beta_x}$, and $\frac{\beta_x}{\beta_y} \approx 1$
- Octupoles are placed in dispersion region close to the chromatic sextupoles

TCBA lattice: property with and w/o Octupoles correction

TCBA lattice: error sensitivity

- The on-momentum DA can be mostly recovered after correction
- Among the different seed simulated, the emittance stays within ~5% for the TCBA after a full optimization

Errors	Value
Transverse misalignment	
$\sigma_{\Delta\mathrm{x,y}}$	20 µm
Roll angle $\sigma_{ m roll}$	200 µrad
Quad strength error	$5 imes10^{-4}$
Δk/k	
Sextupole/ Octupole	
strength error	1×10^{-3}
Δk/k	

Complex bend: Magnet design

•Properties of the element

Integration into lattice design

•Magnet design

•Prototype of Complex Bend

Conceptual Design of a High Gradient CBIII Quadrupole

- Require Quads offset by 1~2 mm for a dipole field, resulting in large harmonic field of B₃ to B₆
- Superimposed Dipole and Quadrupole fields
- External H-shaped electromagnetic dipole with 90 mm aperture
- Halbach PMQ assembled inside a round 90-mm aluminum vacuum chamber
- Ante-chamber for the extraction of xrays and for pumping via NEG strips.

External H-shaped electromagnet dipole for Complex Bend III

S. Sharma et al. "High gradient quadrpoles for low emittance synchrotrons," IPAC2019, Melbourne, Australia, May 2019. S. Sharma

Halbach PMQ for Complex Bend

Standard 16-wedge Halbach PMQ G~358 T/m

Modified PMQ with exit slot for the x-ray beams.

- G: 254 215 T/m with variable slot height
- 3D Opera model, NdFeB with low remanent field, 1.12 T

PMQ field harmonics at 2 mm radii with 3 mm Slot

n	An	Bn
1	-0.1	0.1
2	-0.2	104
3	-0.3	0.1
4	0.0	0.2
5	0.0	0.0
6	0.0	<mark>-55.0*</mark>
7	0.0	0.0
8	0.0	0.0

*can be reduced by shimming of the poles

Complex bend: Prototype of Complex Bend

•Properties of the element

Integration into lattice design

•Magnet design

•Prototype of Complex Bend

Prototype of Complex Bend

- Engineering design for a prototype of CB
- Downscaled E from 3 GeV to 50-200 MeV
- Maintain high gradient magnetic field and reduce the size of the pole and overall length of CB
- Build the prototype from an array of Permanent Magnet Quadrupoles (Commercially available)
- Commission the device at NSLS-II Linac dump line in FY21
- Characterize properties of the CB element, create kick maps and study both geometric and chromatic aberrations
- Motivate the future proposal to build the fullscale CB for 3 GeV machine.

Parameters of CB and NSLS-II dipole

	Complex	50-200 MeV
	Bend	prototype
Length, m	3.1	0.62
Bending field, T	0.26/0.49	0.026/0.049
Cell length, cm	62	12.3
Bending angle per cell, °	1.2	1.2
Gradient, T/m	250/-250	150/-150

Summary and outlook

- An option path for NSLS-II upgrade
- Proposed a new concept of a lattice element "Complex Bend" = a sequence of dipole poles interleaved with strong alternate focusing so as to maintain the beta function and dispersion oscillating at low values
- Comprising the ring lattice with Complex Bends, instead of regular dipoles, we already went to 25 and 19 pm-rad emittance while localizing bending to a smaller fraction of the storage ring circumference
- Explored different lattices with DCBA and TCBA structure and achieved >5 mm DA
- Conceptual designs for high-gradient quadrupoles with Halbach permanent-magnet quadrupole, ~250 T/m
- Developed an engineering design, 150 T/m, for a prototype of CBIII and will be tested at Linac dump line with 50-200 MeV beam

CBIII lattice challenges:

- Further optimization to reach <20 pm-rad emittance
- Short bunchlength. This is usual for all low-emittance lattices
- Increase dynamic aperture and momentum aperture
- Magnetic field superposition

ENERGY Science

• Superbends seamlessly integrated into CBIII for bending magnet users

Acknowledgements

- Many thanks to the Complex Bend design team: Bassi, Gabriele; Blednykh, Alexei; Choi, Jinhyuk; Fliller, Raymond; Hidaka, Yoshiteru; Hidas, Dean; Kosciuk, Bernard; Li, Yongjun, Plassard, Fabien; Shaftan, Timur; Sharma, Sushil; Smalyuk, Victor; Spataro, Charles; Tanabe, Toshiya; Tchoubar, Oleg; Wang, Guimei;
- Thanks to Michael Borland, for sharing tools for linear and non-linear beam dynamics optimization
- Thanks to Emanuel Karantzoulis for useful discussions

Publications:

- "Concept of the Complex Bend", T. Shaftan, V. Smaluk and G. Wang, NSLS-II tech note 276, Jan. 2018
- "Complex bend: Strong-focusing magnet for low-emittance synchrotrons", G. Wang, T. Shaftan, V. Smaluk, et. al, Phys. Rev. Accel. Beams 21, 100703, October 2018
- "Complex Bend-II", T. Shaftan, G. Wang, V. Smaluk, et. al, NSLS-II tech note 291, Oct. 2018
- "Complex bend II: A new optics solution", G. Wang, T. Shaftan, V. Smaluk, et. al, Phys. Rev. Accel. Beams 22, 110703, 2019
- "Realizing low-emittance lattice solutions with Complex Bends", V. Smaluk, T. Shaftan, J. Phys.: Conf. Ser. 1350 012044.
- "High gradient quadrpoles for low emittance synchrotrons," S. Sharma et al. IPAC2019, Melbourne, Australia
- "Reaching Low Emittance in Synchrotron Light Sources by Using Complex Bends", G.M. Wang, T. Shaftan, V. Smaluk et. al, TUZBB2, NAPAC-2019, Michigan, USA

BROOKHAVEN