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Introduction



• National Synchrotron Light Source (NSLS-II) is a
new 3 GeV, 500 mA, high-brightness synchrotron
light source facility at the Brookhaven National
Laboratory, funded U.S. Department of Energy
(DOE).

• SR commissioning started in later March 2014

• Top off routine operation started in October 2015

• 29 beamlines in top off operation at 400 mA

• Demonstrated 500 mA in Oct. 2019

• Brightness/coherence (→ Low emittance) are
essential to enable nanoscale resolution and fast
dynamics study into sub-millisecond regime

• NSLS-II accelerator consists of a 200 MeV Linac,
a full energy Booster and 3 GeV Storage Ring

• SR circumference is 792 m with 0.9 nm-rad
horizontal and 8 pm-rad vertical emittance.

• 15 long (9.3m) and 15 short (6.6m) straight sections

NSLS II overview
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Synchrotron light source: today and tomorrow 
• Two order magnitude of emittance reduction: increasing brightness and coherence

• Transition from Double- and Triple-Bend Achromats to Multi-Bend Achromats

• All MBA-based projects consider significant increase of Nd

V. Smaluk



From DBA to MBA

7BA1 (MAX IV), 250 pm∙rad

1. P.F.Tavares et al., J. Synchrotron Radiat. 21 (2014) 862-877.                                                             2. P.F.Tavares et al., J. Electron. Spectrosc. Relat. Phenom.224 (2018) 8-16.

xmax~8 cm

DBA (NSLS II), 900 pm∙rad

19 BA2 (MAX IV upgrade),16 pm∙ rad

• Trend of minimizing emittance of modern storage rings translates into reduction of x and x in 

their lattice dipoles

• Further reduction of emittance leads to dense and complex MBA lattices

• An alternative solution, Complex Bend (CB): preserve substantial room for SR lattice elements

xmax~8 mm

CB (example for NSLS II),19 pm∙rad

xmax~8 cm

xmax~46 cm
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Complex bend: Properties of the 
element

•Properties of the element

•Integration into lattice design

•Magnet design

•Prototype of Complex Bend 

Transition from individual dipoles

to multiple dipole poles

• APS DBA: 40x2=80 dipoles→

• APS-U MBA: 40x7=280 dipoles→

• NSLS-II upgrade: 30x2x10=600 poles

𝜀𝑥 = 𝐹
𝐸2

𝐽𝑥𝑁𝑑
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Complex Bend concept
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• Complex Bend: a bending element consisting of dipole poles, interleaved with strong focusing 

and defocusing quadrupole poles, QF-D-B-D-QD-D-B-D (CB)

• Conventional long dipole → a sequence of short strong focusing poles

• Produce small beta-function and dispersion, resulting in substantially emittance reduction

Complex Bend I 

G. Wang, , T. Shaftan et al., Complex bend: Strong-focusing magnet for low-emittance synchrotrons, Phys. Rev. Accel. Beams 21, 100703

T. Shaftan



Analytic results of Complex Bend

9

𝛽𝑥(𝑠) ≈ 𝛽𝑥 − Δ𝛽𝑥 cos 𝑘𝐶𝐵𝑠

𝜂𝑥(𝑠) ≈ 𝜂𝑥 − Δ𝜂 cos 𝑘𝐶𝐵𝑠

𝐿𝐶𝐵 = 2 𝐿𝑄 + 𝐿𝐵 + 2𝐿𝐷

Analytic expressions of 𝛽𝑥 , Δ𝛽𝑥 and 𝜂𝑥, Δ𝜂𝑥
have been derived for 𝐾1𝐹 = −𝐾1𝐷 = 𝐾1
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Complex bend vs DBA
• A Complex Bend magnet (10 periods): same

total bending angle and length as NSLS-II

dipole results in 70 pm-rad emittance, 30

times lower emittance than NSLS-II DBA

lattice

• Reach 13 pm-rad emittance with 4.5 m CB

• Very strong quadrupole magnets (hundreds

T/m) → ~1 mm horizontal shift introduce

required dipole field

NSLS-II dipole Complex bend I

Length, m 2.6 2.6 (0.26 per cell)

Bending field, T 0.4 1.05

Bending angle, rad 0.105 0.105

K1, m-2 0 +100 / –80

max / min, m 3.7 / 0.7 0.42 / 0.24

max / min, mm 137 / 0 4.7 / 3.6

Emittance, nm 2.09 0.07
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Complex bend 

Dipole 



Evolution to CB II and CB III
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1.5 cells of CBII geometry 

G. Wang, T. Shaftan, V. Smaluk et al., Complex Bend II: A new optics solution , Phys. Rev. Accel. Beams 22, 110703, 2019

• CB II&III: offer substantially reduce the device

length by removing the dipole poles

• CB II Bending: shift the quadrupole poles offset

• CB III Bending: PMQ installed into a wide gap of

the conventional electromagnet

Permanent Quads inside an 

electromagnet dipole for CBIII

Complex Bend II

Complex Bend I 

Complex Bend III



Stability constraint of ring beam dynamics 
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Theorem: stability condition to maintain positive partition numbers

𝜂𝐹𝑎𝑣𝐾1𝐹
2 𝐵𝐹𝑎𝑣

3 + 𝜂𝐷𝑎𝑣𝐾1𝐷
2 𝐵𝐷𝑎𝑣

3 ≈ 0

𝐼4 ≈
𝑁𝑝2𝜂𝐹𝑎𝑣𝐾1𝐹𝐿𝑄

𝜌𝐹𝑎𝑣
3 −

𝑁𝑝2𝜂𝐷𝑎𝑣𝐾1𝐷𝐿𝑄

𝜌𝐷𝑎𝑣
3

𝜀𝑥 = 𝐹
𝐸2

𝐽𝑥 𝑁𝑑𝑁𝑝
3

• Quads in dipole: synchrotron integral 𝐼4, dominated from quads 𝐾1 in each pole →

specific condition to maintain positive partition numbers 𝐽𝑥/𝑧
• Ring can be stable if the relationship between the B fields of focusing and defocusing

poles is satisfied

𝐽𝑥 = 1 −
𝐼4

𝐼2
, 

𝐼2 = ර
𝑑𝑠

𝜌2
𝐼4 = ර

𝜂

𝜌
(
1

𝜌2
+ 2𝐾1)𝑑𝑠

𝐽𝑧 = 2 +
𝐼4

𝐼2
, 

Periodic structure case, 𝑁𝐹 = 𝑁𝐷 = 𝑁𝑄, 𝐿𝐹 = 𝐿𝐷 = 𝐿𝑄

G. Wang, T. Shaftan, V. Smaluk et al., Complex Bend II: A new optics solution , Phys. Rev. Accel. Beams 22, 110703, 2019
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Complex bend: Integration into lattice 
design

•Properties of the element

•Integration into lattice design

•Magnet design

•Prototype of Complex Bend 
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DCBA lattice and TCBA lattice

Triple CB Achromat cell structure 

Double CB Achromat cell structure 
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DCBA lattice for NSLS-IIU: 25 pm-rad

• Similar elements layout as NSLS-II

• Comparable space as DBA lattice for SR other elements

• 2*11 poles CB with gradient ~ 105 T/m

• Phase advance cancellation over one super cell, ∆𝜓𝑥 = 7𝜋, ∆𝜓𝑦 = 5𝜋 between sextpoles

• 5 chromatic sextupoles per cell to control chromaticity (K2L < 75 1/m2)

• 7 mm*1.5 mm (x/y) dynamic aperture, sufficient for the off-axis anti-septum1 injection

(Δµ𝑥, Δµ𝑦) = (7π, 5π)

V. Smaluk

CB1 CB2Quads Sextupoles

Long 
straight

Short 
straight

A. Jackson, PA 22 (1987) 111C. Gough and M. Aiba, TOP-UP INJECTION WITH "ANTI-SEPTUM" , IPAC2017, P774-776
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TCBA lattice for NSLS-IIU: 34 pm-rad 

• Three CBs to control dispersion: dispersion bump and dispersion suppression

• Two edge CBs’ with lower gradient, thus large physical aperture for ID radiation extraction

• Middle CB (G ~100 T/m) focusing poles with no bending to minimize emittance

• Phase advance within one cell, ∆𝜓𝑥 = 3𝜋, ∆𝜓𝑦 = 𝜋 between sextupoles

• Two dispersion bumps per cell with 3 families of chromatic sextupoles to control chromaticity

(K2L < 50 1/m2)

• Long/short straight structure with zero dispersion: insertion devices, RF cavity, injection

• Lattice was optimized (beta, phase, setupole strength) to provide a self-cancellation of

geometric Resonant Driving Terms (RDTs) ℎ𝑗𝑘𝑙𝑚 (j+k+l+m=3) from chromatic sextupoles. Will

consider to implement harmonic sextupoles

(Δµ𝑥, Δµ𝑦) = (3π,π) (Δµ𝑥, Δµ𝑦) = (3π,π)

Y. Hidaka, F. Plassard

CB1 CB2 CB3Quads Sextupoles

Long 
straight

Short 
straight
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TCBA lattice: main parameters
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TCBA lattice: higher order correction

• The lattice performance is strongly limited by higher order effects from the sextupoles, 

especially amplitude dependent tune shift (ADTS) terms 

• Octupoles are used here to correct large linear ADTS

• The strength of 3 octupole families are calculated from solving the linear system to cancel for 
the horizontal, vertical and cross term of linear amplitude detuning

• Oct[H, V, C] are placed in the lattice with large 
𝛽𝑥

𝛽𝑦
, large 

𝛽𝑦

𝛽𝑥
, and 

𝛽𝑥

𝛽𝑦
≈ 1

• Octupoles are placed in dispersion region close to the chromatic sextupoles

F. Plassard
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TCBA lattice: property with and w/o Octupoles correction

Without Octupoles

With Octupoles

• 3 families of octupoles:

K3L ~ 3600 1/m3

• Improve ADTS

• Improve on-momentum

DA: ±~3mm → ±~9mm

• Reduce momentum

acceptance due to

increase of 2nd order

chromaticity. Need

further optimization

F. Plassard



• The on-momentum DA can be mostly 

recovered after correction

• Among the different seed simulated, 

the emittance stays within ~5% for 

the TCBA after a full optimization

TCBA lattice: error sensitivity

Errors Value

Transverse misalignment

𝜎Δx,y 20 µm

Roll angle 𝜎roll 200 µrad

Quad strength error

Δk/k 
5× 𝟏𝟎−𝟒

Sextupole/ Octupole

strength error

Δk/k
1× 𝟏𝟎−𝟑

F. Plassard
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Complex bend: Magnet design
•Properties of the element

•Integration into lattice design

•Magnet design

•Prototype of Complex Bend 



Conceptual Design of a High Gradient CBIII Quadrupole
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• Require Quads offset by 1~2 mm for a

dipole field, resulting in large harmonic

field of B3 to B6

• Superimposed Dipole and Quadrupole

fields

• External H-shaped electromagnetic

dipole with 90 mm aperture

• Halbach PMQ assembled inside a round

90-mm aluminum vacuum chamber

• Ante-chamber for the extraction of x-

rays and for pumping via NEG strips.

S. Sharma et al. “High gradient quadrpoles for low emittance synchrotrons,” IPAC2019, Melbourne, Australia, May 2019.

In-vacuum PMQ 

External H-shaped electromagnet dipole 

for Complex Bend III 

S. Sharma

Ante  Chamber

e - Beam

ID Beam G ≈ 120 T/m
Aperture = 15 mm

Out-of-Vacuum PMQ

G ≈ 250 T/m
Aperture = 10 mm



Halbach PMQ for Complex Bend

PMQ field harmonics at 2 mm 

radii with 3 mm Slot 

Standard 16-wedge 

Halbach PMQ

G~358 T/m

n An Bn

1 -0.1 0.1

2 -0.2 104

3 -0.3 0.1

4 0.0 0.2

5 0.0 0.0

6 0.0 -55.0*

7 0.0 0.0

8 0.0 0.0

Modified PMQ with exit slot for 

the x-ray beams.

• G: 254 - 215 T/m with variable 

slot height 

• 3D Opera model, NdFeB with 

low remanent field, 1.12 T *can be reduced by shimming 

of the poles

23
S. Sharma
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Complex bend: Prototype of Complex 
Bend 

•Properties of the element

•Integration into lattice design

•Magnet design

•Prototype of Complex Bend 
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Prototype of Complex Bend 

• Engineering design for a prototype of CB

• Downscaled E from 3 GeV to 50-200 MeV

• Maintain high gradient magnetic field and reduce

the size of the pole and overall length of CB

• Build the prototype from an array of Permanent

Magnet Quadrupoles (Commercially available)

• Commission the device at NSLS-II Linac dump

line in FY21

• Characterize properties of the CB element,

create kick maps and study both geometric and

chromatic aberrations

• Motivate the future proposal to build the full-

scale CB for 3 GeV machine.
Complex

Bend

50-200 MeV

prototype

Length, m 3.1 0.62

Bending field, T 0.26/0.49 0.026/0.049

Cell length, cm 62 12.3

Bending angle per cell,  1.2 1.2

Gradient, T/m 250/-250 150/-150

Parameters of CB and NSLS-II dipole 

PMQ from RadiaBeam
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• An option path for NSLS-II upgrade

• Proposed a new concept of a lattice element “Complex Bend” =

a sequence of dipole poles interleaved with strong alternate focusing so as to maintain

the beta function and dispersion oscillating at low values

• Comprising the ring lattice with Complex Bends, instead of regular dipoles, we already

went to 25 and 19 pm-rad emittance while localizing bending to a smaller fraction of the

storage ring circumference

• Explored different lattices with DCBA and TCBA structure and achieved >5 mm DA

• Conceptual designs for high-gradient quadrupoles with Halbach permanent-magnet

quadrupole, ~250 T/m

• Developed an engineering design, 150 T/m, for a prototype of CBIII and will be tested at

Linac dump line with 50-200 MeV beam

CBIII lattice challenges:

• Further optimization to reach <20 pm-rad emittance

• Short bunchlength. This is usual for all low-emittance lattices

• Increase dynamic aperture and momentum aperture

• Magnetic field superposition

• Superbends seamlessly integrated into CBIII for bending magnet users

Summary and outlook
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