

Challenges and Solutions for the APS-U Design

Michael Borland

Joe Calvey, Jeff Dooling, Xiaobiao Huang, Ryan Lindberg, Vadim Sajaev, Yipeng Sun for the APS-U Beam Physics Team

8th Low Emittance Ring Workshop 26 October 2020

APS Upgrade project is ambitious and challenging

- Entirely new 6-GeV, 200-mA ring, including
 - Multi-bend-achromat lattice
 - 1320+ high-strength conventional magnets
 - 1104 m of vacuum systems
 - Orbit correction system with 1 kHz bandwidth
 - Superconducting insertion devices
 - New and upgraded x-ray beamlines
- Will exceed brightness of 3rd-generation storage ring light sources by 2 to 3 orders of magnitude

Advanced Photon Source (APS)

Outline

- Overview of APS-U lattice development
- Beam physics challenges include
 - Requirement for rapid commissioning
 - Sufficient confidence in design to dismantle a working ring
 - Injection into small acceptance ring
 - Ensuring sufficient single-bunch current for timing mode
 - Ensuring sufficient beam lifetime
 - Controlling ion effects
 - Limiting beam dump damage
- Acknowledgments

Lattice targets ultimate performance for APS-sized ring

Final lattice¹ emerged after ~five years of development

42-pm natural emittance in40-sector ring with1.1 km circumferenceat 6 GeV

- Chose Hybrid 7-Bend Achromat (H7BA)² with reverse bends^{3,4}
 - Higher brightness than alternatives we explored^{5,6}
 - Workable injection aperture and lifetime
- Appears to be the brightest operable ring we can build today that fits in the APS tunnel

M. Borland et al., NAPAC16, 877.
 L. Farvacque et al., IPAC13, 79 (2013).
 J. Delahaye et al., PAC89, 1611 (1990).
 A. Streun, NIM A 737:148 (2014).
 M. Borland, et al., IPAC15, 1776.
 Y. P. Sun et al., NAPAC16, 920.

Lattice optimization combines good design with evolution

- Started with ESRF-developed HMBA concept
 - Dispersion bumps give 2-3 fold reduction in sextupole strengths
 - Near-cancellation of leading-order geometric sextupole effects
- For APS-U, use tracking-based optimization^{1,2,3} with multi-objective genetic algorithm⁴ (MOGA) to evolve linear and nonlinear lattice properties, including
 - Particle tracking to determine injection aperture, Touschek lifetime, and momentum-dependent tune footprint
 - X-ray brightness calculation to determine performance at 10 keV
 - Optimize within constraints provided by engineering designs
- Technique proven in applications to present APS
 - Lattices with high chromaticity, broken symmetry, but high performance^{3,5}
 - Similar techniques in wide-spread use⁶⁻¹⁰

1: I. Bazarov et al, PRSTAB **8**, 034202 (2005).

- 2: H. Shang et al., PAC 2005, 4230.
- 3: M. Borland et al., PAC 2009, 3850.
- 4: K. Deb et al., IEEE Trans. on Evol. Comp. 6, 182 (2002).
- 5: V. Sajaev et al., NAPAC16, 907.
- 6: L. Yang et al., PRSTAB 14, 054001 (2011).
- 7: W. Gao, PRSTAB 14, 094001 (2011).
- 8: C. Sun, PRSTAB 15, 054001 (2012).
- 9: M. Ehrlichman, PSTAB 19, 044001 (2016).
- 10: Y. P. Sun, NAPAC16, 924.

Fast lattice commissioning facilitated by automation

- Challenge: only three months to commission the ring
- Detailed lattice commissioning simulation developed^{1,2}
 - Error generation
 - First-turn, then global trajectory correction
 - Rf setup
 - Orbit correction
 - Lattice measurement and correction
 - Coupling adjustment
- This software will be used for actual APS-U commissioning
 - Partial test on the existing APS succeeded in achieving stored beam

1: V. Sajaev et al., IPAC2015, 553.

2: V. Sajaev, PRAB 22, 040102 (2019).

Accurate BPM offset measurement possible

- Challenge: need 30 µm rms BPM offset accuracy to enable accurate lattice correction
 - Having many reverse bends and too few pure quads makes this problematic
- A scheme was developed to measure BPM offsets relative to nearby sextupoles
 - Form closed x, y bumps around sextupole
 - Scan bumps in 2D grid
 - At each grid point, measure change in corrector strength needed to keep bump closed when sextupole current is reduced 50%
- Initial results don't meet 30 µm requirement
 - Iterating with orbit correction allows beating requirement in most cases
 - Expect entire process to take up to 50 hours

Commissioning simulation has many benefits

- Challenge: engineering specifications must be no tighter than necessary or cost, schedule issues may arise
- By running commissioning simulation with different assumptions
 - Determined alignment tolerances
 - Evaluated support alternatives
 - Provided power supply calibration and magnetic measurement requirements
- Commissioning simulation provides many "ensembles" of post-commissioning conditions
 - Used in tracking-based prediction of post-commissioning lifetime, injection efficiency, loss distributions, instabilities

Girder misalignment	$100~\mu{ m m}$
Elements within girder	$30~\mu{ m m}$
Dipole fractional strength error	$1 \cdot 10^{-3}$
Quadrupole fractional strength error	$1 \cdot 10^{-3}$
Dipole tilt	$0.4 \mathrm{mrad}$
Quadrupole tilt	$0.4 \mathrm{mrad}$
Sextupole tilt	$0.4 \mathrm{mrad}$
Corrector calibration error	5%
Corrector calibration error Initial BPM offset error	5% 500 $\mu { m m}$
Corrector calibration error Initial BPM offset error BPM calibration error	$5\% \\ 500 \ \mu{ m m} \\ 5\%$
Corrector calibration error Initial BPM offset error BPM calibration error BPM single-shot measurement noise	$5\% \\ 500 \ \mu{ m m} \\ 5\% \\ 30 \ \mu{ m m}$
Corrector calibration error Initial BPM offset error BPM calibration error BPM single-shot measurement noise BPM orbit low-current noise	$5\% \\ 500 \ \mu{ m m} \\ 5\% \\ 30 \ \mu{ m m} \\ 3 \ \mu{ m m}$
Corrector calibration error Initial BPM offset error BPM calibration error BPM single-shot measurement noise BPM orbit low-current noise BPM orbit high-current noise	5% 500 $\mu{ m m}$ 5% 30 $\mu{ m m}$ 3 $\mu{ m m}$ 0.1 $\mu{ m m}$

Error tolerances validated through commissioning and robustness simulations

Detailed simulations provide confidence in design

Injection loss fraction distribution for 100 ensembles (30 shots each) for three emittance assumptions Touschek lifetime distribution for 100 ensem., incl. LMA evaluation, optimized passive harmonic cavity, longitudinal impedance, and IBS Gas-scattering lifetime distribution for 100 ensem. using local angular and momentum acceptances, detailed gas pressure model

Challenges and Solutions for the APS-U Design, M. Borland et al., LER Workshop, October 2020

APS-U elegant/AT comparison gives further confidence¹

Parameter	elegant	AT
Horizontal tune, ν_x	95.0999	95.0993
Vertical tune, ν_y	36.0999	36.1007
Momentum compaction, $\times 10^{-5}$	4.0406	4.0399
Chromaticity, ξ_x	8.1183	8.1704
Chromaticity, ξ_y	4.7221	4.8739
Natural chrom., ξ_x^{nat}	-133.6488	-133.5874
Natural chrom., ξ_y^{nat}	-111.6335	-111.4689
Emittance (pm)	41.6612	41.6434
Energy loss per turn (MeV)	2.8688	2.8700
Momentum spread, σ_{δ} , $\times 10^{-3}$	1.3499	1.3494
Damping partition, J_x	2.2497	2.2495
Damping time τ_x (ms)	6.8446	6.8424

DA and LMA results shown here use notional errors, rather than commissioning sets.

1: M. Borland et al., PRAB 22, 114601 (2019).

On-axis swap-out takes over where top-up left off

- Challenge: Lower emittance leads to poor lifetime, small injection aperture¹
- Top-up operation^{2,3} helped 3rd -generation light sources maximize performance
 - Accommodates shorter lifetime, but requires sufficient injection aperture for efficient beam accumulation
- Swap-out^{4,5} accommodates drastically reduced injection aperture

Traditional off-axis injection

Enabling technology now available: fast, high-voltage kickers

Challenges and Solutions for the APS-U Design, M. Borland et al., LER Workshop, October 2020

On-axis swap-out injection (initially proposed by M. Borland)

Swap-out helps APS-U compete on two fronts

- Alternative design¹ allowed accumulation, but
 - 90-pm emittance too high in light of intense international competition
 - Collective effects at injection would prevent 200-mA, 48-bunch timing mode²
- APS-U has two concepts for swap-out
 - Default³: vertical-plane injection with DC Lambertson septum
 - Alternative: Horizontal-plane injection with pulsed septum, emittance exchange in transport line
 - See A. Xiao's talk on Thursday

Y. Sun et al. NAPAC16, 920.
 R.Lindberg et al., NAPAC16, 901.
 A. Xiao et al., PAC13, 1076.

APS-U impedance model developed early in design

- Challenge: understand collective effects early enough to guide decisions
- Early impedance model based on notional "pre-engineering" chamber concept
 - ID transitions, resistive wall, plus other components scaled from APS¹
- Added and assessed details as engineering design progressed
- Results include
 - Choice of swap-out injection
 - Specification of required chromaticity
 - Keeping MWI under control
 - Refining rf gasket design and tolerances
 - Specifying NEG-coating thickness
- Margin is ~3x when feedback is included
 - Stability at injection is limiting factor

1: Y. C. Chae et al., PAC07, 4336.

Geometric contributions					
Sector $(\times 40)$		R	Ring		
Element	Number	r Element	Number		
In-line absorber	17	Inj/Ext kick	xer 3		
BPM-bellows	14	Other kicke	ers 3		
Gate valve	4	352 MHz rf-c	avity 12		
Flange	47	Rf transitio	ns 3		
ID transition	/ 1	4 th harmonic o	cavity 1		
Crotch absorber	2	Collimators (H/V) 5/2		
	5				
Small gap ID BPINS	0.5				
Dominant					
sources of	Resistive wall				
longitudinal	Metal	Diameter	Length		
wakefields	Cu	$22 \mathrm{mm}$	224 m		
	Al	$22 \mathrm{mm}$	$625 \mathrm{~m}$		
Dominant	\mathbf{SS}	$22 \mathrm{~mm}$	80 m		
Durinant	Al	$6 \mathrm{mm}$	$50 \mathrm{~m}$		
	Al	$16 \times 6 \text{ mm} (\text{H} \times \text{V})$	$125 \mathrm{m}$		
transverse					
instabilities		F	R. Lindberg		

Challenges and Solutions for the APS-U Design, M. Borland et al., LER Workshop, October 2020

Tracking-based predictions of collective effects for the present APS agree with measurements^{1,2,3}

V. Sajaev et al., PAC13, 405 (2013).
 R. Lindberg et al., IPAC15, 1822 (2015).
 S. Shin et al., PRAB 22, 032802 (2019).

Overstretching increases Touschek lifetime ~25%

- Challenge: obtain 3 h lifetime to stay within limits of existing shielding at 200 mA¹
- Long Touschek lifetime requires
 - Sufficient rf voltage
 - Accurate lattice correction to preserve LMA
 - "Round beam" operation: $\varepsilon_v = \varepsilon_x$
 - Bunch-lengthening cavity (BLC)
- Modeling incorporates many details
 - Slight emittance increase due to IBS
 - Variation in LMA among commissioning ensembles
 - Non-gaussian longitudinal distribution from self-consistent model with impedance and passive BLC

1: B. Micklich, private communication.

Gas scattering lifetime dramatically improved

- Challenge: obtain sufficient gas-scattering lifetime to preserve margin relative to 3 hour target
- Long (e.g,. >30 h) GS lifetime requires
 - Sufficient local DA and MA
 - Sufficiently low pressure, particularly for heavier gases
- Went beyond simple estimates^{1,2}
 - MOLFLOW³/SYNRAD⁴ for vacuum system modeling
 - Parallel elegant for local DA and MA computation
 - Per-species determination of local outscattering rates, local loss rates
- Outcome: NEG coating expanded to encompass ~50% of the circumference (~20% activated)
 - Min. predicted GS lifetime increased from ~17h to ~47h

M. Borland et al., IPAC15, 546.
 M. Borland et al., NAPAC19, WEPLE08.
 M. Ady et al., IPAC14, 2348.
 R. Kersevan, PAC93, 3848.

Challenges and Solutions for the APS-U Design, M. Borland et al., LER Workshop, October 2020

Compensated gaps can control the ion instability¹

•1000 25

20

15

10

(ions/m)

density

line

After 1000 A-hr conditioning

No gap

2 gaps

4 gaps

12 gaps

18 gaps

- Gaps between bunch trains allow time for ions to escape^{2,3}
- Minimize rf transients by distributing "missing" charge to bunches adjacent to gaps ("guard bunches")
 - High charge bunches before gap provide a stronger kick to ions
 - Simulations show modest impact on bunch distribution and Touschek lifetime, no impact on MBI growth rates
- Ion simulations show that even 2 gaps of 2 bunches each greatly reduces ion trapping and eliminates the ion instability

Dedicated ion experiment further refines understanding

- A gas-injection experiment was performed in APS to gather definitive data
- Injected N₂ into 6-m straight section up to ~100 or ~800 nT
- Measure frequencies of beam motion, emittance increase with various bunch patterns, beam current, etc.
- Simulation initially gets ion frequency wrong (10 MHz instead of 5 MHz)
- Using bi-gaussian model for ion fields gives agreement
 - Sensitive to numerical parameters
 - More study needed
- Application of improved models to APS-U is underway

APS-U beam is potentially destructive^{1,2}

- Concerns for high-current, low-emittance beam
 - Perforation of vacuum chamber
 - Erosion of the swap-out dump
 - Erosion of the whole-beam dumps
 - Spray of metal globules in the chamber
- Recent experiments in APS match APS-U conditions for whole-beam dumps
 - Peak dose as high as 30 kJ/g
 - Damage to AI6061 is evident
- Mitigating strategies, supported by experiment and simulation
 - Use five whole beam dumps to reduce chance of chamber strike
 - Plan for sacrificial surfaces on whole-beam dumps
 - Choose low Z material with high thermal diffusivity
 - Use kickers to decohere or spread the beam

See J. Dooling's talk on Friday for more detail

^{1:} J. Dooling et al., NAPAC19, MOPLM14. 2: M. Borland et al., IPAC18, 1494.

Kickers can protect the various beam dumps

- Whole-beam dump(s) hit by entire beam over ~50 µs
 - Have ~160 µs to act after, say, rf trips
 - Fire a weak kicker when abort is detected
 - Bunches hit dump in different vertical locations
 - Emittance slightly increased by decoherence
 - If kicker fails to fire, dump will be damaged
- APS-U also has a "swap-out dump"
 - One 15-nC, ~100 ps, bunch will melt Al-6061
 - To protect the swap-out dump
 - Pre-kick target bunch with weak kicker ~200 turns before swapping
 - Increases emittance in both planes >100-fold
 - Swap will not occur if decoherence kicker fails to fire

Conclusions

- APS-U design pushed to limits of existing circumference, technology
 - Confidence comes from extensive simulation
- Continue to refine modeling and understanding of single-particle and collective dynamics
 - Make commissioning as fast as possible
 - Ensure a timely transition to user operations
 - Improve ability to react to the unexpected
 - Existing ring provides invaluable opportunity to test codes, understanding
- Hot topics include
 - Choice of injection option (A. Xiao, Thursday)
 - Whole beam dumps (J. Dooling, Friday)
 - Swap-out safety tracking

Acknowledgments

APS-U Beam Physics Team includes

T. Berenc, A. Blednykh (BNL), M. Borland, J. Byrd, J. Calvey, J. Carwardine,

- G. Decker, J. Dooling, L. Emery, K. Harkay, S. Henderson (TJNAF), R. Hettel, X. Huang,
- S. Kallakuri, J. Kerby, S. Kim, R. Lindberg, B. Micklich, V. Sajaev, M. Sangroula (MIT),
- N. Sereno, Y.P. Sun, D. Teytelman (Dimtel), U. Wienands, K. Wootton, A. Xiao, C.Y. Yao,

A. Zholents

Simulation codes

- Serial and parallel versions of ELEGANT^{1,2} and related tools³
- Wakefields: ECHO⁴, GdfidL⁵
- Ions: FIILINAC⁶, ELEGANT
- Beam-material interaction: shower⁷, MARS⁸
- Other: TAPAs⁹
- Computations used ANL's Blues and Bebop clusters, ASD's Weed cluster
- ESRF generously shared an early version of their H7BA lattice

M. Borland, LS-287.
 Y. Wang et al., AIP Conf. Proc 877.
 M. Borland et al., IPAC2003.

4: I. A. Zogorodnov et al, PRSTAB 8, 042001.5: W. Bruns.6: L. Wang et al., PRSTAB 4, 084401.

7: L. Emery, PAC96, 2309. 8: N.V. Mokhov, FNAL Tech. Rep. FN-628, 1995. 9: M. Borland, NAPAC16, 625.

22

Challenges and Solutions for the APS-U Design, M. Borland et al., LER Workshop, October 2020