

The τ → 3µ search at CMS in future LHC runs: preparation for Run 3 and optimization studies toward HL-LHC

Research program proposal of Caterina Aruta

PhD school in Physics - XXXV cycle

Introduction

In the Standard Model there is **NO symmetry** than enforces the conservation of the **lepton flavor**.

- The observation of neutrino oscillations is an evidence of the lepton flavor violation in the *neutral* lepton sector.
- *Charged* lepton flavor violating decays are possible in Standard Model with neutrino oscillations.

In particular, the decay $\tau \rightarrow 3\mu$ is predicted with branching fraction $\sim 10^{-14}$, too rare to be observed at present-day experiments

Status of the art for the $\tau \rightarrow 3\mu$ search

The $\tau \rightarrow 3\mu$ decay has **never** been observed so far.

The best experimental upper limit was set by

Belle : $\mathcal{B}(\tau \to 3\mu) < 2.1 \cdot 10^{-8}$ at 90% C.L.

At LHC

LHCb: $\mathcal{B}(\tau \to 3\mu) < 4.6 \cdot 10^{-8}$, CMS: $\mathcal{B}(\tau \to 3\mu) < 8.8 \cdot 10^{-8}$

ATLAS : $\mathcal{B}(\tau \to 3\mu) < 3.8 \cdot 10^{-7}$ with **2016** data ($\mathcal{L} = 33 \ fb^{-1}$)

During the work of my master thesis, I have searched this decay using **2017** CMS data $(\mathcal{L} = 38 \ fb^{-1})$ and an *expected* upper limit of $\mathcal{B}(\tau \rightarrow 3\mu) < 1.1 \cdot 10^{-7}$ at 90% C.L. was estimated, which is compatible with the one obtained in 2016: $\mathcal{B}(\tau \rightarrow 3\mu) < 9.9 \cdot 10^{-8}$ at 90% C.L

CMS upgrade during the second Long Shutdown

CMS muon system upgrade

- GE1/1 station will add redundancy to the system in a region characterized by high background
- this new station of detectors will improve the L1 trigger and the muon momentum resolution

4

Future perspectives for $\tau \rightarrow 3\mu$ search // Run 3

Run 3

- 300 *fb*⁻¹ expected to be collected during Run 3 data taking
- By increasing the sensitivity of the $\tau \rightarrow 3\mu$ analysis of at least a factor two, the estimated upper limit for Run 3 can be competitive with the one obtained in 2023 by LHCb.

Research activity proposal

- □ improvement of the $\tau \rightarrow 3\mu$ analysis sensitivity by studying a new strategy for the multivariate analysis in order to increase the background rejection. Search for $\tau \rightarrow 3\mu$ using first data of Run 3.
- □ development of a new High Level Trigger path for Run 3 data taking, which can exploit new tools available in CMS in the next run (e.g. GEM-CSC trigger in $1.6 < \eta < 2.1$) to tag the muons at Level 1.

CMS upgrade during the third Long Shutdown

CMS muon system upgrade

- GE2/1, RE3/1, RE4/1 stations will provide additional measurements of the muon tracks, reinforcing the redundancy of the system
- the ME0 station will extend the muon system coverage from |η| = 2.4 to 2.8

6

Future perspectives for $\tau \rightarrow 3\mu$ search // HL-LHC

HL – HLC

- During HL-LHC era 4000 fb^{-1} are expected to be collected and the sensitivity of the analysis improves with the increasing of the luminosity (\mathcal{L}) , as it depends on $\sqrt{1/\mathcal{L}}$.
- the τ → 3µ analysis will benefit from the extended acceptance provided by the ME0 station

Research activity proposal

- optimization of the muon reconstruction and identification algorithms to include information coming from the new muon stations.
- □ The background rejection in the expected 200 pile up can be improved by exploiting machine learning techniques
- **u** full analysis implementation in HL-LHC scenario with simulated datasets

7

Research activity program

First year program

- improvement of the τ → 3μ analysis sensitivity in order to make it compatible with Belle, by studying a new strategy for the multivariate analysis
- development of a new High Level Trigger path for Run 3 data taking, by exploiting the GEM-CSC trigger in 1.6 < η < 2.1

Second and third year program

- optimization of the muon reconstruction and identification algorithms to include information coming from the new muon stations
- study of a background rejection strategy by exploiting machine learning techniques
- full analysis implementation in HL-LHC scenario with simulated datasets
- □ $\tau \rightarrow 3\mu$ search using data collected in the first part of Run 3 data taking

Backup slides

9

LFV in Beyond the Standard Model theories

MSSM with R-parity violation

Feynman diagram representing the $\tau \rightarrow 3\mu$ decay in a MSSM with R-parity violation $(\tilde{v}_{iL} \text{ and } \tilde{v}^*_{iL} \text{ are sneutrinos}).$ The upper limit to the branching ratio of this process is $\mathcal{B}(\tau \rightarrow 3\mu) < 2.2 \cdot 10-3 m(\tilde{v}^2_{iL})$.

LFV in Beyond the Standard Model theories

MSSM with See-Saw mechanism

Feynman diagram contributing to the $\tau \rightarrow 3\mu$ decay in a MSSM model with See-Saw mechanism (h₀, H₀ and A₀ are neutral Higgs bosons)

CMS upper limit extrapolations with Run 2 and Run 3 statistics

$$UL_{CMS}^{Run2} = \sqrt{\frac{\mathcal{L}_{CMS}^{2016}}{\mathcal{L}_{CMS}^{Run2}}} \cdot UL_{CMS}^{2016} = 0.4 \cdot 10^{-7} \text{ at } 90\% \text{ C.L.}$$

However, if the upper limit sensitivity is increased by at least a factor two, it is possible to obtain a final limit for the whole Run 2 equal to:

$$UL_{CMS}^{Run2} = 0.2 \cdot 10^{-7}$$
 at 90% C.L.

and, consequently, for Run 3:

$$UL_{CMS}^{Run3} = \sqrt{\frac{\mathcal{L}_{CMS}^{Run2}}{\mathcal{L}_{CMS}^{Run3}}} \cdot UL_{CMS}^{Run2} \Longrightarrow UL_{CMS}^{Run3} = 0.1 \cdot 10^{-7} \text{ at } 90\% \text{ C.L.}$$

Upper limit extrapolations @ 2023

LHCb

$$UL_{LHCb}^{Run3} = \sqrt{\frac{\mathcal{L}_{LHCb}^{Run1}}{\mathcal{L}_{LHCb}^{Run2+3}}} \cdot UL_{LHCb}^{Run1} = 0.1 \cdot 10^{-7} \text{at } 90\% \text{ C.L.}$$

BelleII

$$UL_{BelleII}^{2023} = \sqrt{\frac{\mathcal{L}_{Belle}}{\mathcal{L}_{BelleII}^{2023}}} \cdot UL_{Belle} = 0.05 \cdot 10^{-7} \text{at } 90\% \text{ C.L.}$$

The Belle II schedule

Future perspectives for LFV search in τ decays 15 IP^0 IS⁰ IV⁰ lhh Λh 90% C.L. upper limits for LFV τ decays 0 10 CLEO BaBar 0^{-7} Belle LHCb 10⁻⁸ ATLAS Belle II ★LHC-HL 10⁻⁹ **10**⁻¹⁰

Bounds on Tau Lepton Flavour Data from the existing experiments are compiled by HFLAV; projections of the Belle-II bounds were performed by the Belle-II collaboration assuming 50 ab⁻¹ of integrated luminosity.

u_ete

μ⁻e⁺μ

, ₽,

μ'μ⁺

א⁺ה'פ ג'ה'א

e ete

,σ, X

Ϋ́,

Ϋ́

arXiv:1812.07638

ж<u>л</u> КЛ

π'Λ

ж^{, н}, ^н, Х, е⁺К , и, К

X°X°X°

л е⁺л л и⁺л л е+К

,K⁺K

Search for $\tau \rightarrow 3\mu$ at HL-LHC

	Category 1	Category 2
Number of background events	$2.4 imes 10^6$	$2.6 imes 10^{6}$
Number of signal events	4580	3640
Trimuon mass resolution	18 MeV	31 MeV
$\mathcal{B}(\tau \to 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}
$\mathcal{B}(au ightarrow 3\mu)$ 90% C.L. limit	$(3.7 \times$	10^{-9}
$\mathcal{B}(au ightarrow 3\mu)$ for 3- σ evidence	6.7 imes	10^{-9}
$\mathcal{B}(au ightarrow 3\mu)$ for 5- σ observation	$1.1 \times$	10^{-8}

(Top) The expected numbers of signal and background events in the mass window 1.55 -2.0 GeV for CMS. An integrated luminosity of **3000 fb⁻¹** and a signal $B(\tau \rightarrow 3\mu) = 2 \times 10^{-8}$ is assumed.

(Bottom) The search sensitivities for the combined categories.

<u>Category 1</u> for events with all three muons reconstructed only with the Phase-1 detectors, and <u>Category 2</u> for events with at least one muon reconstructed by the new triple Gas Electron Multiplier (GEM) detectors.

D and **B** meson decay branching fractions

Process	Branching ratio (BR)	Reference
$D_s \to \tau \nu_{\tau}$	$(5.48 \pm 0.23) \cdot 10^{-2}$	PDG
$B^+ \to \tau \nu_\tau D_0^*$	$(2.7 \pm 0.3) \cdot 10^{-2}$	PDG
other $B^+ \to \tau \nu_\tau X$	$0.7\cdot 10^{-2}$	PYTHIA
$B^0 \to \tau \nu_\tau D^{+*}$	$(2.7 \pm 0.3) \cdot 10^{-2}$	PDG
other $B^0 \to \tau \nu_\tau X$	$0.7\cdot 10^{-2}$	PYTHIA
$B^+ \to D_s X$	$(9.0 \pm 1.5) \cdot 10^{-2}$	PDG
$B^0 \to D_s X$	$(10.3 \pm 2.1) \cdot 10^{-2}$	PDG
$D_s \to \phi \pi \to \mu \mu \pi$	$(1.3 \pm 0.1) \cdot 10^{-5}$	PDG

Signal acceptance at generator level

Transverse momentum of each muon from τ produced by D mesons (solid histogram) and B mesons (dashed histogram) in events with all three muons having $|\eta| < 2.4$

Signal acceptance at generator level

Momentum of each muon from τ produced by D mesons (solid histogram) and B mesons (dashed histogram) in events with all three muons having $|\eta| < 2.4$

Signal acceptance at generator level

Signal acceptance at generator level

Efficiency for 3 muons with Inl< 2.4

CMS fiducial volume:
$$\label{eq:p} \begin{split} |\eta| < 2.4 \\ p > 2.5 \ \text{GeV} \end{split}$$

Only ~ 2 % of generator level events are within the CMS acceptance

Level 1 trigger paths - $\tau \rightarrow 3\mu$

L1 DoubleMu0er1p5 SQ OS dR Max1p4

this L1 trigger requires 2 muons with opposite sign and with $|\eta|$ <1.5 and ΔR in [0, 1.961]. No p_t thresholds are applied.

L1 TripleMu 5 3 0 DoubleMu 5 3 OS Mass Max17

it requires three muons and the two muons with the highest p_T must have opposite sign and their invariant mass has to be in [0, 144.5] GeV.

Furthermore, the highest p_T muon must have a $p_T > 5$ GeV and the second one a $p_T > 3$ GeV.

L1 TripleMu_5SQ_3SQ_0_DoubleMu_5_3_SQ_OS_Mass_Max9

it requires 3 muons and the two muons with the highest p_T must have opposite sign and their invariant mass has to be in [0, 40.5] GeV.

Furthermore, the highest p_T muon must have a $p_T > 5$ GeV and the second one a $p_T > 3$ GeV.

High Level Trigger path - $\tau \rightarrow 3\mu$

HLT_DoubleMu3_Trk_Tau3mu v*

it requires two muons with $p_T > 3$ GeV and a track with $p_T > 1.2$ GeV.

In addition the invariant mass of the track + 2 muons must be in [1.60 - 2.02] GeV and the vertex of this triplet has to be displaced from beam-spot by more than two sigma.