

CGEM-IT SOFTWARE STATUS

L. Lavezzi on behalf of the software group

University of Torino & INFN

INDEX & GANTT CHART

- The GANTT chart on the software activities must be ready for the next CGEM workshop
- Discussion ongoing on HN since a while (expecially Stefano & Liangliang)
- I will show the last updated list of tasks and responsibles @ 15/10/2019
- The main topics are:
 - digitization
 - reconstruction
 - alignment
 - calibration
 - analysis of MC data
 - analysis of cosmic ray data
- for each topic, open issues, people involved and updates will be given

DIGITIZATION

```
*** Digitization ***

Induction:

- GTS Induction 1D (complete) - Lia

- GTS Induction 2D (2/3 weeks) - Lia

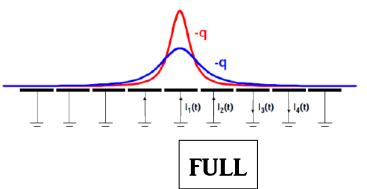
- Induction model based on Garfield simulation (2D, both T&Q, with magnetic field, complete) - Jingyi/Linghui

TIGER response:

- Circuit Simulation and modeling (almost done) - Fabio

- Implementation of T-branch shaping (almost done) - Jingyi/Linghui/Liangliang

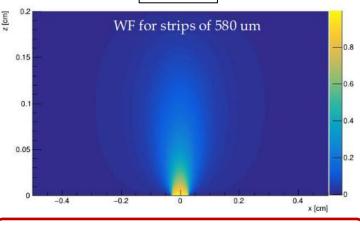
- Implementation of E-branch shaping (2/3 weeks) - Jingyi/Linghui/Liangliang


- Implementation of thresholds/resolutions (2/3 weeks) - Jingyi/Linghui/Liangliang

Digi tuning with cosmics data

- Tuning of APV25 data (almost done?) - Riccardo

- Tuning with CGEM+TIGER data - Jingyi/Linghui
```

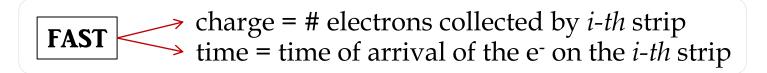

GTS INDUCTION

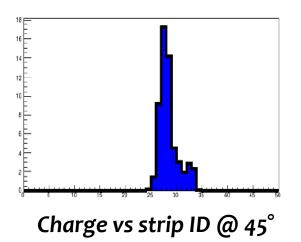
(W. Riegler, CERN seminar)

The current induced on a strip on the anode:

- depends on the position
- ends when the electron arrives on the strip

 $= q_{e-} \times V_{drift} \times W_{loc}$

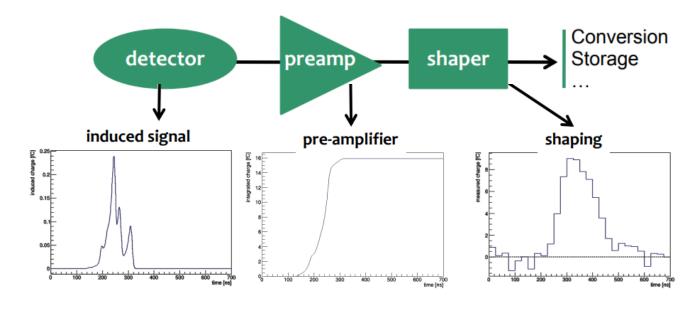

- Ramo's theorem
- electron steps = 1 ns
- weighting field analytical, 1D
- one-dimensional

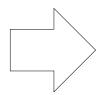

GTS INDUCTION

• full induction 1D	DONE	
• fast induction 1D	DONE	

Once **all the electrons** have arrived on the anode: [W. Riegler, CERN seminar]

- the signal is **finished**
- the charge on the i-th strip = the number of electrons collected by the strip




- matching of charge distribution OK
- *to do* matching of time distribution

fast induction is **x** 30 faster than the full!

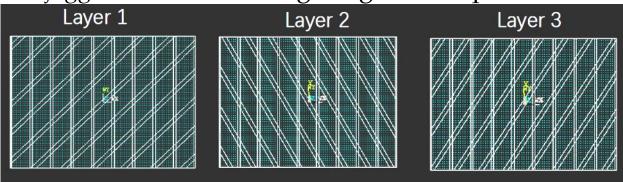
APV-25 ASIC

The **charge** is the peak value of the signal

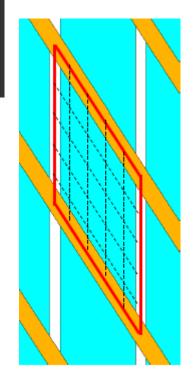
The **time** comes from a Fermi-Dirac fit of the rising edge

as in real signal reconstruction

APV-25 ASIC


• full induction 1D	DONE
• fast induction 1D	DONE
• APV-25	DONE
• two dimensions	TO DO

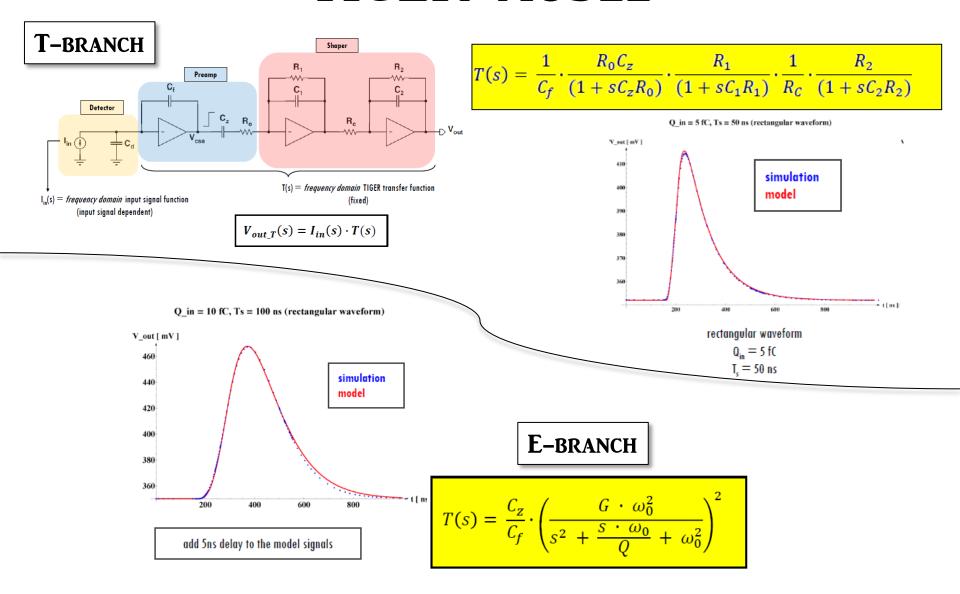
- the charge sharing can be accounted for with *ad hoc* multiplication factors (data driven)
- the focusing effect of the electric field and of the non-constant drift velocity can be accounted for with *ad hoc* multiplication factors (data driven)


GTS, renamed PARSIFAL, was presented @ RD51 Collaboration Meeting: **BIG SUCCESS!**

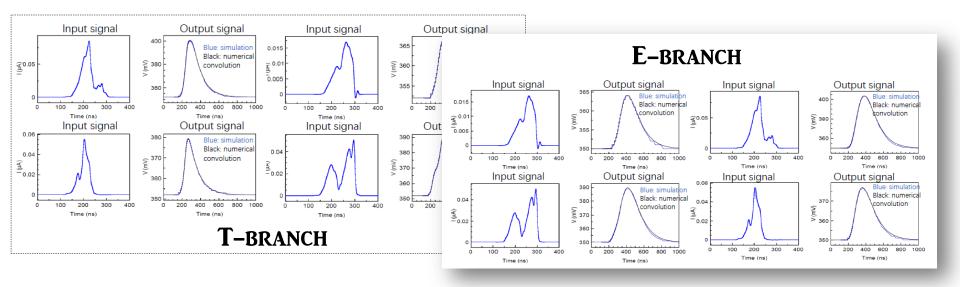
Induction in CgemBoss

• non-jagged anode and weighting field implemented

- usual procedure in signal formation, *i.e.*:
 - parametrize the signal for each electron position (GARFIELD++)
 - sum all the contributions from different electrons on one strip
- non-jagged *vs* jagged, no relevant changes in:
 - cluster size
 - charge
- evaluation of charge sharing: $\frac{Q_X}{Q_V} = 1.49 \Rightarrow 1.53$


PRELIMINARY

TIGER MODEL


• TIGER model	O	N	1		6	
---------------	---	---	---	--	---	--

- The model:
 - \checkmark takes into account the different duration and shape of input signals
 - ✓ well reproduces the T-branch shaper output
 - ✓ provides a good approximation for the E-branch shaper output
 - ✓ validated with "real" CGEM signals
 - ✓ faster than computer circuit simulator (requires Laplace Transform evaluation)
- To-Do:
 - \Box Take into account the saturation of the front-end (signals > 50 fC will have a different response)

TIGER MODEL

TIGER IN CGEMBOSS

Request - values of thresholds are needed, will be provided The reconstruction of the signal of the TIGER still has to be implemented

TUNING

• to APV-25 data

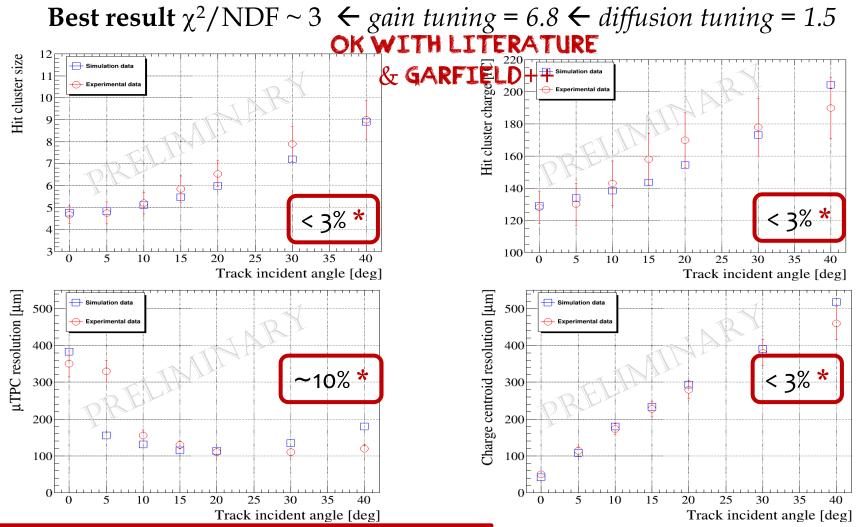
Scan (TB of April 2018)

particle incident angle $[0^{\circ}, 40^{\circ}]$, B = 0

Tuning factor on

Gain, diffusion

Sentinel variables


- measured charge
- cluster size
- position resolution (charge centroid)
- position resolution (μ-TPC)

Procedure

- for each gain and diffusion values, simulate 7 angles: 0, 5, 10, 15, 20, 30, 40
- for each angle, run 20k muons \rightarrow statistical error around 1% compute $\chi^2 = \chi^2_{\text{charge}} + \chi^2_{\text{cl.size}} + \chi^2_{\text{CCresol.}} + \chi^2_{\mu-\text{TPCresol.}}$
- evaluate χ^2/NDF

TUNING

• to APV-25 data.

DIGITIZATION

```
*** Digitization ***

Induction:
- GTS Induction 1D (complete) - Lia
- GTS Induction 2D (2/3 weeks) - Lia
- Induction model based on Garfield simulation (2D, both T&Q, with magnetic field, complete) - Jingyi/Linghui

TIGER response:
- Circuit Simulation and modeling (almost done) - Fabio
- Implementation of T-branch shaping (almost done) - Jingyi/Linghui/Liangliang
- Implementation of E-branch shaping (2/3 weeks) - Jingyi/Linghui/Liangliang
- Implementation of thresholds/resolutions (2/3 weeks) - Jingyi/Linghui/Liangliang

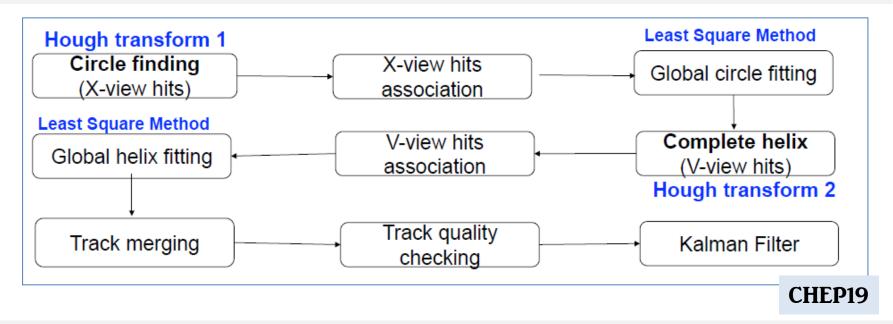
Digi tuning with cosmics data
- Tuning of APV25 data (almost done?) - Riccardo
- Tuning with CGEM+TIGER data - Jingyi/Linghui
```

Missing:

- once the TIGER has been implemented in CgemBoss
- once the cosmic data have been analyzed

RECONSTRUCTION

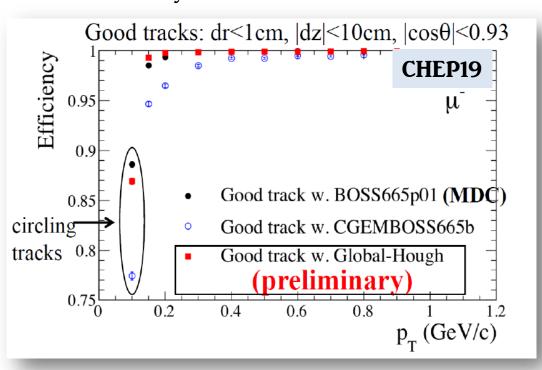
```
*** Reconstruction ***


Position reconstruction in u-TPC mode
- uTPC linear fit implementation - Riccardo/Xiaoling

Improved global track reconstruction with Hough Transform
- track fit quality improvement (4 weeks) - Zhen Huang/Liangliang

Merge CC+uTPC
- Mode with cluster size - Riccardo
- Mode with the incident angle - Riccardo
```

The global pattern recognition:


- wants to use *simultaneously* CGEM and ODC hits
- is based on Hough Transformation

The status is the following:

- refinement of the binning of the histograms DONE
- continuous testing ONGOING

• Unfortunately the last release was in 2018

SINGLE TRACK EFFICIENCY

- CGEMBOSS665b April 2017
- CGEMBOSS665c July 2018

- Actually a new release was foreseen for last week, but nothing happened
- Updates are ongoing, but the work is very slow due to the lack of manpower

- version v13 of the Hough Transform replaced v12
- shows a **better efficiency** for the benchmark channel
- ...but not after χ^2 cuts

• Sample:	ψ' —	$\rightarrow J/\psi + \pi^+ +$	- π-
•		$ \longmapsto $	$e^{+} + e^{-}$

	Boss665p01	Hough V12	Hough V13
$\pi^+ + \pi^- + e^+ + e^-$	65. 71	58. 55	63. 67
4 good tracks events ②	63. 25	60. 16	62. 68
4C fit events ③	57.84	52.68	54. 20
4C fit($\chi^2 < 200$)	57. 36	51.37	50. 41
4C fit($\chi^2 < 60$)	38. 70	30. 14	25. 36

Note:

- ① $\pi^+ + \pi^- + e^+ + e^-$: pid by momentum, p<0.8GeV \rightarrow pion, p>0.8GeV \rightarrow electron
- ② 4 good tracks: |dr|<1.0cm, |dz|<10cm, $|\cos\theta|<0.93$, total charge =0
- 3 Some other mass cut before 4C fit

- version v13 of the Hough Transform replaced v12
- shows a **better efficiency** for the benchmark channel
- ...but not after χ^2 cuts
- still two problems:
 - Kalman filter failure rate

	Boss665p01	Hough V12	Hough V13
Kalman filter failure tracks	2.4%	4.58%	18.48%

• Memory leakage:

v13 uses global fitting procedure 16 times more often than v12!

→ there is some missing "delete" to release memory

The global pattern recognition:

- wants to use simultaneously CGEM and ODC hits
- is based on Hough Transformation

The status is the following:

• structure/	$^\prime$ design of the $^\prime$	code	DONE
--------------	-----------------------------------	------	------

- refinement of the binning of the histograms DONE
- continuous testing ONGOING

To be done:

- fix memory leakage issue TO DO

manpower needed!

RECONSTRUCTION

```
*** Reconstruction ***

Position reconstruction in u-TPC mode
- uTPC linear fit implementation - Riccardo/Xiaoling

Improved global track reconstruction with Hough Transform
- track fit quality improvement (4 weeks) - Zhen Huang/Liangliang

Merge CC+uTPC
- Mode with cluster size - Riccardo
- Mode with the incident angle - Riccardo
```

Missing:	
• µ-TPC in CgemBoss	TO DO
• merging in CgemBoss	TO DO

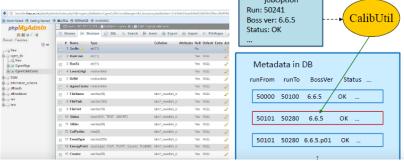
ALIGNMENT

*** Alignment ***

- Validate the algorithm and work flow with MC (2-4 weeks) Aiqiang/Linghui
- Optimize constraints and fit parameters for simple misalignment effects with MC (4 weeks) Aiqiang/Linghui
- Validation by MC having complex misalignment effect and various statistics (8 weeks) Aiqiang/Will/Linghui

NO NEWS

CALIBRATION


- framework DONE
- database **DONE**
- identify the calibration variables ONGOING

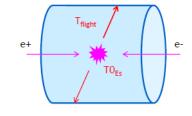
CalibConst

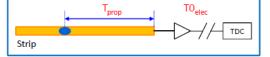
- · Based on MySQL
- GUI client

ReadRecEvent

(in progress)

CgemCalibAlg


Calibration


(base class)

- T_{TDC} = TO_{Es} + T_{flight} + T_{drift} + TO_{elec} + T_{prop}
- Used in both reconstruction and digitization in the case of micro-TPC readout mode
- TO_{elec} will be calibrated strip by strip
- T_{prop} is a function as layer, z &

type of the strip (x or v)

 $\mathsf{TO}_{\mathsf{elec}}$ is related to circuit, cables and time delay.

CALIBRATION

STRATEGY ONCE THE COSMICS WERE AVAILABLE

DONE

Check basic T,Q distribution, hitmaps (2 weeks) - Jingyi/Linghui

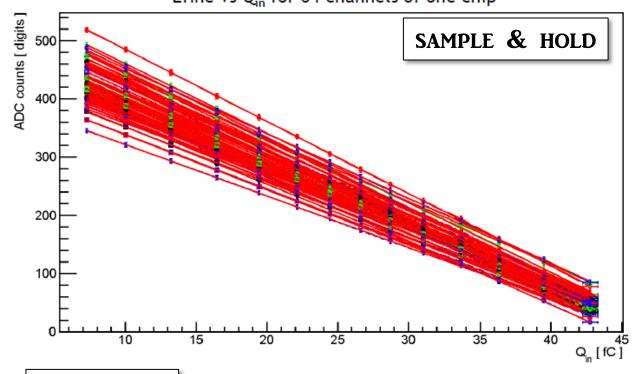
Run the whole procedure and check the distributions Jingyi/Linghui/Hongpeng/Liangliang

TO DO

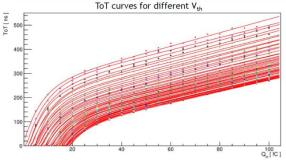
Study the calibration methods and details - Jingyi/Linghui

 Try the calibration procedure including the iteration of calibration and alignment - Jingyi/Aiqiang/Linghui

TIGER-SIDE CALIBRATION

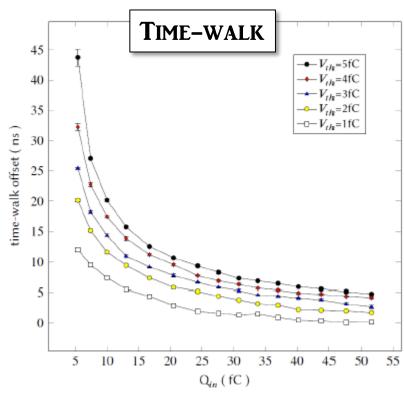

Requested LUT for:	
• global information	ONGOING
• strip information	ONGOING
• E branch	ONGOING
• T branch	ONGOING

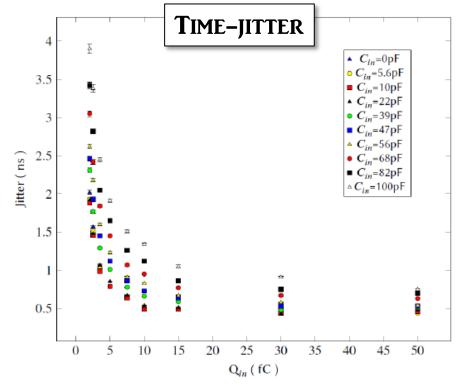
Name	Type	Description	T-BRANCH		
first Run	int				
last Run	int	GLOBAL	Name	Type	Description
HV LAYER1	float[7]		noise T	float	mV or fC
HV LAYER2	float[7]		threshold T	int	digit
HV LAYER3	float[7]		T time min	int[4]	one value for each TAC - T branch
integration time	int	integration time for S&H	T time max	int[4]	one value for each TAC - T branch
time reference	int	T0 for electronics (trigger latency)	time window	int[2]	time window to select signal (ROC-wise)
time walk correction	func/histo?	(66 57			
energy mode	int	0/1 = ToT/S&H			E-branch


Name	Type	Description	Name	Type	Description
layer ID	int	0-2 CTDID	noise E	float	mV or fC
sheet ID	int		threshold E	int	digit
strip ID	int		E time min	int[4]	one value for each TAC – E branch
channel	int	0-63	E time max	int[4]	one value for each TAC – E branch
GEM-ROC	int	0-22 ?	E calibration slope	float	
FEB	int	0-3	E calibration offset	float	
chip	int	0-1	Q cut	fC	threshold to select valid signals (software)
strip capacitance	float	pF		•	
strip quality	int	good, bad, disconnected, noisy			

E CALIBRATION

TIME OVER THRESHOLD




THRESHOLDS

LUT created by scans on each channel

- ullet Threshold scans allow also to evaluate the noise for each channel ($\sigma=$ noise)
- This information is used to set the threshold at a given value (e.g. 3σ) above the baseline in order to equalize the channels noise rate (few kHz)

T CALIBRATION

Depends on:

- input charge
- threshold level
- → for each channel

Depends on:

- input charge
- input capacitance
- → for each strip

re-evaluation with longer signal times TO DO

ANALYSIS

```
*** Analysis ***
Validation with particle gun
- Single particle performances - Isabella/Peter?
- Multiparticle perfomances - Isabella/Peter?
Validation with benchmark channels
- ? (?) - Peter?/analysis people?
analysis of cosmic rays
- Data conversion (done) - Aigiang
- Input/output tests (done) - Lia
- Mapping - Lia
- Check basic distributions including T, Q, hitmaps (2 weeks) - Jingyi/Linghui
- Validation of uTPC reconstruction - Riccardo?
- Track (straight line) reconstruction - Hongpeng
- Integration, run the whole procedure and check the distributions - Jingyi/Linghui/Hongpeng/Liangliang
- Study the calibration methods and details - Jingyi/Linghui

    Iteration of calibration and alignment - Jingyi/Aiqiang/Will//Linghui

- Performance studies (resolution, efficiency, occupancy)
```

It was decided that the cosmic data are pre-processed in **GRAAL** (since no official DAQ by now) >

- 3. provide information on the content of the files **DONE**

R. FARINELLI

G. MEZZADRI

DATA

PROVIDED the data from L1+L2, of september 2019 **TO BE PROVIDED** the new data, from L2 alone, of october 2019

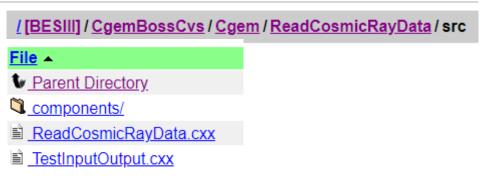
- GRAAL on CVS
 - https://docbes3.ihep.ac.cn/viewvc/cgi-bin/viewvc.cgi/BESIII/CgemCvs/GRAAL/
- 2. Data files are on IHEP machines in the folder: /bes3fs/cgemCosmic/data
- 3. Information about the files are in:

https://docbes3.ihep.ac.cn/~cgem/index.php/Documentation

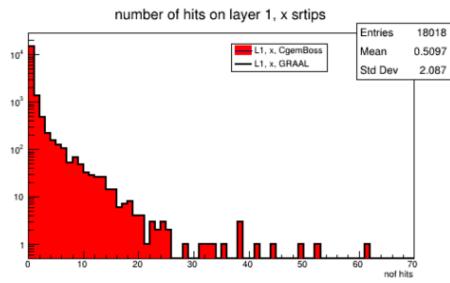
Documentation

1. Design and construction of the BESIII detector Media: Bes3-detector.pdf

The following links are the documents shared for the cosmic data taking analysis inside ${\sf CGEMBOSS}$

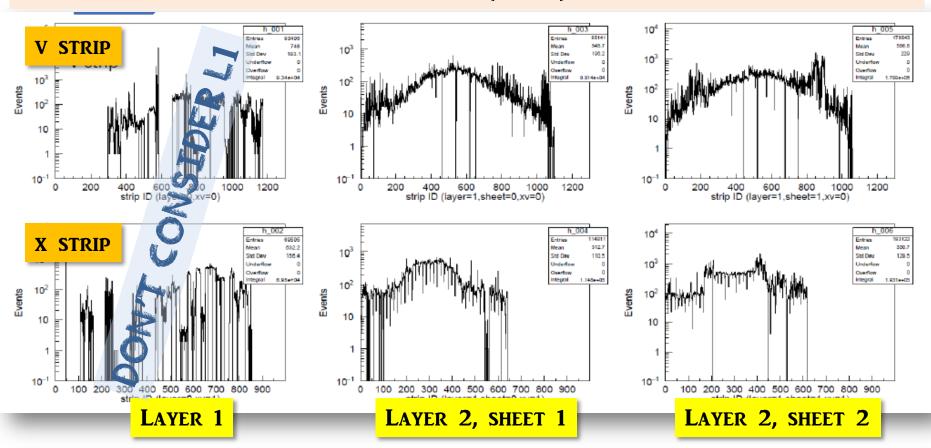

- 2. LogBook of the Data taking <code>https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-26073-logbook.pdf</code> \blacksquare
- 3. Data format in GRAAL: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-19094-Data_format_GRAAL.pdf 🗈
- 4. Layer 1 strip mapping: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-84851-Layer_1.pdf 🗈
- 5. Layer 1 chip pinout: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-55155-L1_FEB_pinout.pdf \blacksquare
- 6. Layer 1 anode description: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.28-69885-Mapping_Anode_L1.pdf

 ↑
- 7. Layer 2 strip mapping: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-94944-Layer_2.pdf \blacksquare
- 8. Layer 2 chip pinout: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-65356-L2_FEB_pinout.pdf \blacksquare
- 9. Layer 2 anode description: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-83348-Mapping_Anode_L2.pdf

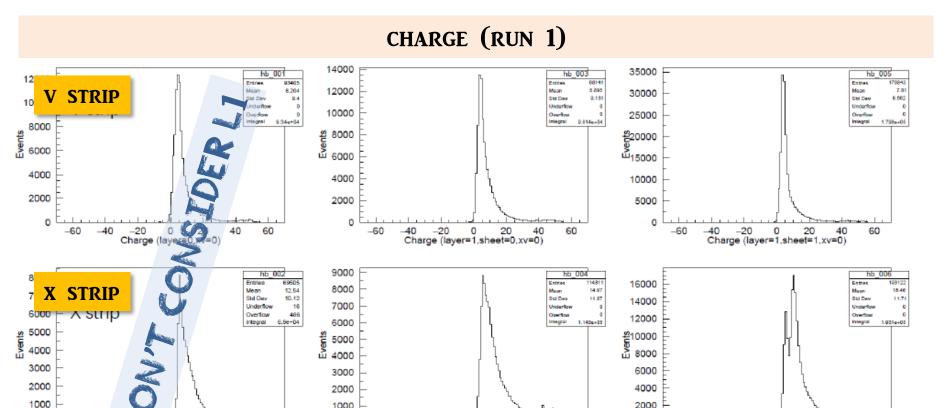

 ↑
- 10. Mapping FEB: https://hnbes3.ihep.ac.cn/HyperNews/get/AUX/2019/09/16/12.27-56044-Manning FEB ndf A

It was decided that the cosmic data are pre-processed official DAQ by now) →	d in GRAAL (s	ince no
 upload GRAAL to CVS provide the data files provide information on the content of the files 	DONE	R. FARINELLI G. MEZZADRI
 translation of the GRAAL info to the CgemBoss one input/output test mapping consistency variable distributions 	DONE ONGOING	A. Guo L. Lavezzi JY. Zhang

ReadCosmicRayData package created and updated



- Input/output successfull on all the variables (∀ layer, strip type)
 - nof hits
 - strip ID
 - strip charge
 - strip time



mapping consistency check ongoing

STRIP IDS (RUN 1)

- some strip ID are missing → they are from FEBs which have been replaced
- request list of dead channel required TO DO
 - mapping strip ID -to ROC/FEB/TIGER/channel TO DO

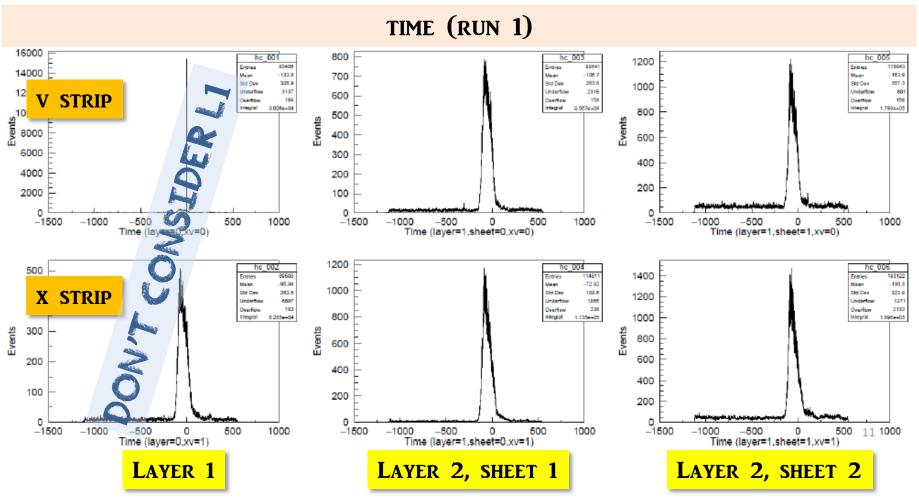
charge distributions look reasonable

Charge (layer=0,xv=1)

LAYER 1

1000

• request - list of saturation values for each channel


Charge (layer=1,sheet=0,xv=1)

LAYER 2, SHEET

2000

Charge (layer=1,sheet=1,xv=1)

Layer 2, sheet 2

- time distributions look reasonable
- request list of noisy channels TO DC

a married a the adote files (data talking of soutombou)	nce no R. Farinelli G. Mezzadri
 translation of the GRAAL info to the CgemBoss one DONE input/output test DONE mapping consistency ONGOING variable distributions ONGOING 	A. Guo L. Lavezzi JY. Zhang
Requests (to provide/implement in CgemBoss): • mapping of stripID to ROC/FEB/TIGER/channel TO DO • list of saturation values for each channelTO DO	

list of noisy/dead/disconnected channels TO DO
list of thresholds/noise for each channel TO DO

It is proposed to create a look up table and functions to read it

... AND 100K EVENTS FOR EACH LAYER, FOR EACH SHEET, IN THE SAME CONDITIONS

ANALYSIS

```
*** Analysis ***
Validation with particle gun
- Single particle performances - Isabella/Peter?
- Multiparticle perfomances - Isabella/Peter?
Validation with benchmark channels
- ? (?) - Peter?/analysis people?
analysis of cosmic rays
- Data conversion (done) - Aigiang
- Input/output tests (done) - Lia
- Mapping - Lia
- Check basic distributions including T, Q, hitmaps (2 weeks) - Jingyi/Linghui
- Validation of uTPC reconstruction - Riccardo?
- Track (straight line) reconstruction - Hongpeng
- Integration, run the whole procedure and check the distributions - Jingyi/Linghui/Hongpeng/Liangliang
- Study the calibration methods and details - Jingyi/Linghui
- Iteration of calibration and alignment - Jingyi/Aiqiang/Will//Linghui

    Performance studies (resolution, efficiency, occupancy)
```

• MC data analysis all in standby STANDBY until the global tracking will be released

cosmic ray data analysis is the main topic now!

Information Sharing

- regular software meetings (vidyo)
 - find a time good for China, Europe and US, not easy!

 We pick the best solution each time

 (old time slots, updating...)

- new! <u>CGEM wiki page</u> https://docbes3.ihep.ac.cn/~cgem/index.php/Main_Page
- <u>CgemBoss wiki page</u> <u>https://docbes3.ihep.ac.cn/~offlinesoftware/index.php/CgemBoss_information</u>
- **new!** <u>Hypernews</u> *specifically dedicated to CGEM software* <u>https://hnbes3.ihep.ac.cn/HyperNews/get/cgemsft.html</u>
- private <u>e-mail exchange</u> not so good, but sometimes happens!

requests and bug reports are quite good right now

WARNING TO THE "BOSSES"

- policy for poster/talks to conferences is respected by everyone
- we need a policy for publications

At least three papers are going to be submitted to journals soon:

- one about the *chinese* digitization model
- one about the PARSIFAL (a.k.a. GTS) digitization
- one about the high rate (ok, maybe this is not within BESIII)
- in any case, since we have (since always) the problem of two digitizations, please **don't fix the rules in between the two articles**, otherwise one will be signed by only a part of the group and the other will be signed by everyone and this would not be fair!

THAT'S ALL FROM MY SIDE, THANK YOU FOR THE ATTENTION!

BACKUP

Global Tracking

track finding

- segment finder in ODC and CGEM & matching
- not good for short tracks

CgemBoss665b

global track finding

Hough transform in ODC + CGEM (v12)
 global track fitting
 least square method

CgemBoss665c

Track finding

• updated Hough transform

not yet released

Milestone 6 completed?

Tune what to what? ...and why?

comparison to the test beam data collected on April 2018

RD51 testbeam

- GOLIATH dipole magnetic field
- H4 beam line, SPS-NA (CERN) 150 GeV/c muons

triple-GEM specifics

- planar triple-GEM, 10 x 10 cm² fields: 1.5/2.75/2.75/5 kV/cm
- double view readout, APV-25
- gas: Ar:i-C₄H₁₀ (90:10)

- HV: 275/275/275 V
- magnetic field off or on (B = 1T)
- incident angle: 0°, 5°, 10°, 15°, 20°, 30°, 45°

Settings we kept in the GTS simulation

- conversion factor: 30 ADC = 1 fC (*)
- threshold: 45 ADC = 1.5 fC
- noise sigma: 15 ADC = 0.5 fC