Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Marco Scodeggio

G. Cibinetto, I. Garzia & G. Mezzadri

04 November 2019 BESIII Italy Meeting Perugia

Outline:

- Analysis summary:
 - Goal and Strategy
 - The Data Sets
 - Event Selection in a nutshell
 - Background Suppression
 - Efficiency and Resolution
- I/O Test
- 2012 Data
- 2009 Data
- 2009+2012 Data
- Angular Distributions
- Systematic Errors
- Conclusions

In the beginning was the Word

Goal	Strategy
Measure the h _c (1 ¹ P ₁) features with higher precision wrt Phys. Rev. Lett. 104	Reconstruction of the h_c mass from the π^0 recoiling mass, throughout two decay routes
$\begin{array}{l} \text{Measurements of branching ratios} \\ (\psi(2S) \ \rightarrow \ \pi^{_0} h_c, \ h_c \ \rightarrow \ \gamma \ \eta_c) \\ \text{will be performed too} \end{array}$	Inclusive DecayBigger sample $\psi(2S) \longrightarrow \pi^{0}h_{c}$ Background dominated
Previous Analysis: 106M of ψ(2S) events This Analysis: 410M of ψ(2S) events	E1 Tagged DecayPurer sample $ψ(2S) \longrightarrow π^0 h_c, h_c \longrightarrow \gamma \eta_c$ Less statistics

Through data sets all analyses are made

Signal MC

- How big? 2 samples of 300k events each
- What? MC simulations of the $\psi(2S) \rightarrow \pi^0 h_c$ decay and the $\psi(2S) \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ decay chain

Data

• How big?

- 2012 \rightarrow ~ 340M events
- 2009 \rightarrow ~ 106M events

What? Taken @ ψ(2S) resonance (on-peak)

Inclusive MC

- How big? 400M events (2012)
- What? MC simulation of $\psi(2S)$ resonance with its and its daughters main known decay modes

Continuum

- How big? 44 pb-1
- What? Continuum @ 3.650 GeV (off-peak)

Events selection in a nutshell

Charged Tracks

Vertex: $R_{xy} < 1 \text{ cm } \& R_z < 10 \text{ cm}$ Polar angle: $|\cos \theta| < 0.93$ Momentum: p < 2.0 GeV

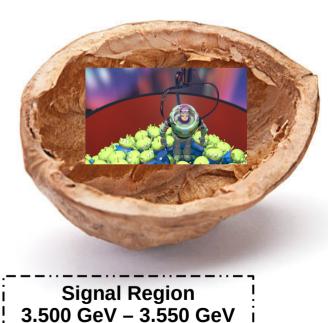
Event

At least 2 good charged tracks $\psi(2S) \rightarrow \pi^0 h_c$: At least 2 good photons $h_c \rightarrow \gamma \eta_c$: At least 3 good photons

Inclusive

γ, from signal π_0 , must not belong to other π_0 M_{yy} invariant mass constrained to the π_0 nominal one by a 1-C kinematic fit

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


 $\label{eq:photons} \begin{array}{l} \mbox{Photons} \\ \mbox{Isolation: } \Delta(\Omega) > 10^{\circ} \\ \mbox{EMC Time Info: } 0 \leq t \leq 14 \\ \mbox{E}_{\gamma} \mbox{(Barrel)} > 25 \mbox{ MeV}, \mbox{|cos θ| < 0.80} \\ \mbox{E}_{\gamma} \mbox{(End Caps)} > 50 \mbox{ MeV}, \mbox{0.86 < |cos θ| < 0.92} \end{array}$

Recoiling π^0

γ in the Barrel ($|\cos θ| < 0.8$) $E_{\gamma} > 40 \text{ MeV}$ 120 MeV < $M_{\gamma\gamma} < 145 \text{ MeV}$

E1 Tagged

 $\begin{array}{l} 465 \; \text{MeV} < \text{E}_{\gamma \; \text{Tag}} < 535 \; \text{MeV} \\ \gamma_{\text{E1}} \; \text{must not to form a } \pi_0 \; \text{with any other } \gamma \\ \text{If more than one } \pi_0 \; \text{is found in the signal region the} \\ \pi_0 \; \text{with the best 1-C fit } \chi^2 \; \text{is kept} \end{array}$

Background Suppression

From Inclusive MC:

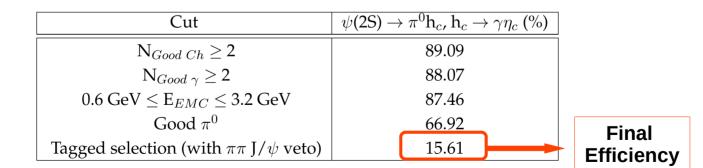
- i. $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$
- ii. $\psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$
- iii. $\psi(2S) \rightarrow \gamma \chi_c^0$

i. & ii. Studied to define vetoing windows.

iii. Not a problem, because the γ recoiling energy is not in the signal range (465 MeV < $E_{\gamma \, Tag}$ < 535 MeV). However, as a sanity check, the $\psi(2S) \rightarrow \gamma \, \chi_c{}^0$ decay (and its subsequent $\chi_c{}^0 \rightarrow \pi{}^0 \, \eta_c$) was studied to search for resonant features. Nothing but a typical combinatorial shape was found.

 $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$ $M(J/\psi) \pm 5 MeV$ $\psi(2S) \rightarrow \pi^0 \pi^0 J/\psi$

 $M(J/\psi)^{+15 \text{ MeV}}_{-45 \text{ MeV}}$

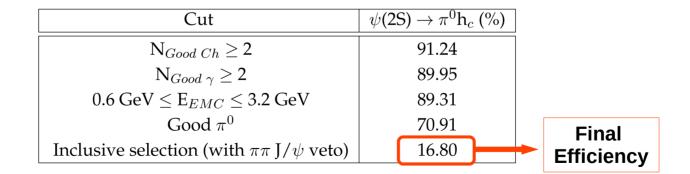

Efficiency Study Tagged Channel

Signal MC Sample of 300k events

Decay psi(2S)

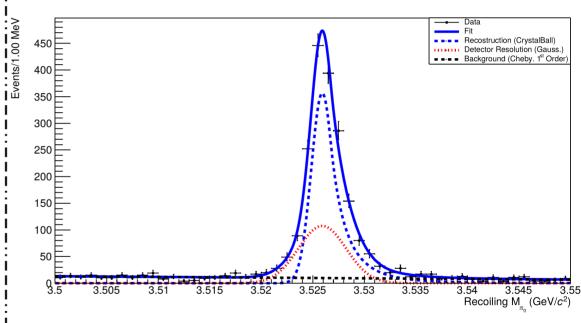
1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay

Decay h_c 1.0000 gamma eta_c AngSam 1.0 1.0; Enddecay

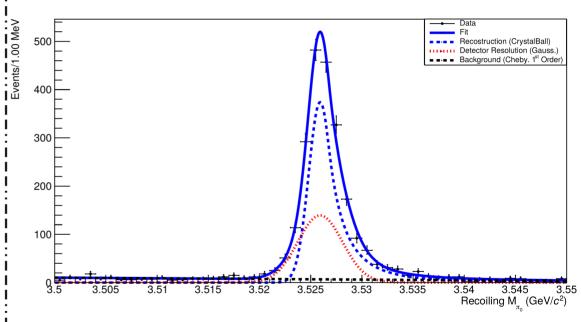


End

Efficiency Study Inclusive Channel


Signal MC Sample of 300k events

Decay psi(2S) 1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay End


Resolution Study Tagged Channel

- Signal shape:
 - Sum of Gaussian (Detector Resolution) and Crystalball (Reconstruction) functions, with the tail of the Crystalball on the right due to recoil energy of π^0
- Resolution: 2.7 MeV
- The reconstruction induced background (here modeled by a 1st order Chebychev function) is absorbed by the background in the inclusive MC/data

Resolution Study Inclusive Channel

- Signal shape:
 - Sum of Gaussian (Detector Resolution) and Crystalball (Reconstruction) functions, with the tail of the Crystalball on the right due to recoil energy of π^0
- Resolution: 2.7 MeV
- The reconstruction induced background (here modeled by a 1st order Chebychev function) is absorbed by the background in the inclusive MC/data

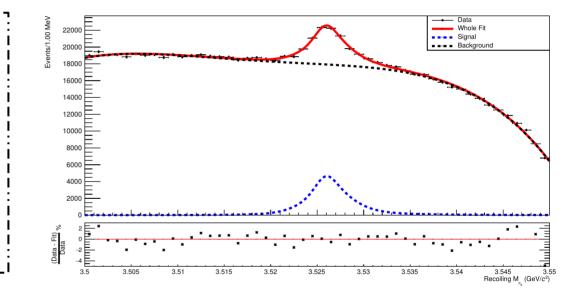
I/O Test Fit Procedure

Binned (1 bin/MeV) fit of each channel (Inclusive and Tagged), where:

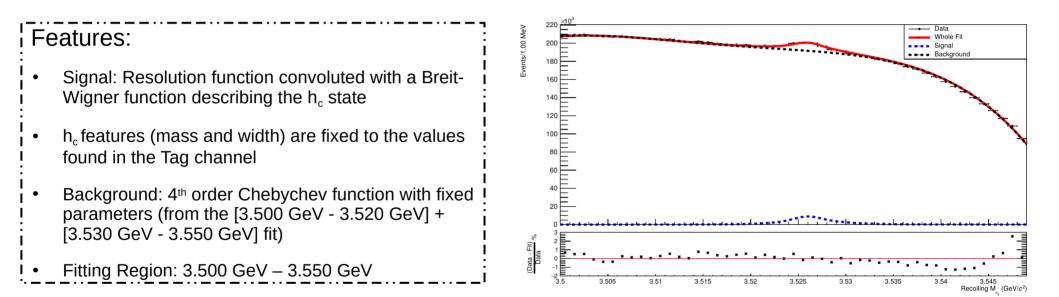
- In the Tagged channel, the $\rm h_{c}$ mass and width, and the background parameters are allowed to float;
- In the Inclusive channel, the h_c mass and width are fixed to the values found in the Tagged channel, and the background parameters are obtained by blinding the signal and fitting the signal region extremities.

I/O data set

Inclusive MC was cleared from the h_c signal events.


A 340k signal MC data set was merged with the background-only Inclusive MC.

I/O Test Tagged Channel


Features:

- Signal: Resolution function convoluted with a Breit-Wigner function describing the h_c state
- h_c features (mass and width) are left floating
- Background: 4th order Chebychev function with floating parameters
- Fitting Region: 3.500 GeV 3.550 GeV

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

I/O Test Inclusive Channel

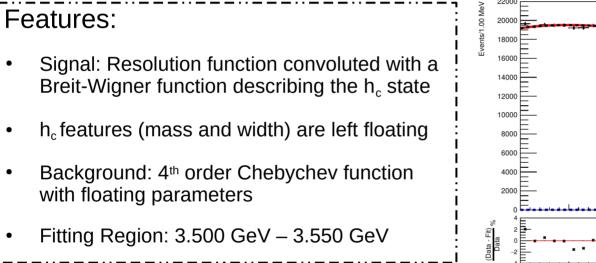
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

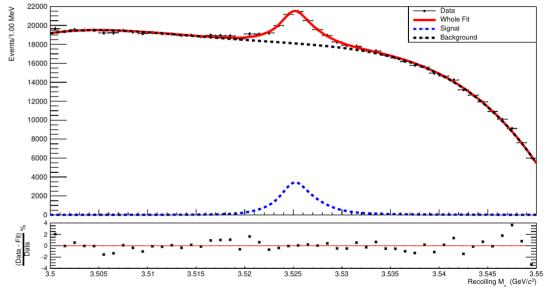
I/O Test Results

Feature [Unit of Measurement]	Input	Output	$\sigma(\Delta(I-O))$
$M(h_c)$ [GeV]	3525.93	3526.03 ± 0.06	1.67
$\Gamma(h_c)$ [MeV]	1.00	1.38 ± 0.26	1.46
$\mathcal{B}_1(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}_2(h_c \to \gamma \eta_c) [10^{-4}]$	4.34	$4.26 {}^{+ 0.25}_{- 0.24}$	0.32
$\mathcal{B}_1(\psi(2\mathrm{S}) o \pi^0 \mathrm{h}_c) \ [10^{-4}]$	8.51	8.54 ± 0.26	0.16
$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	51	$49.82 {}^{+ 3.28}_{- 3.20}$	0.36

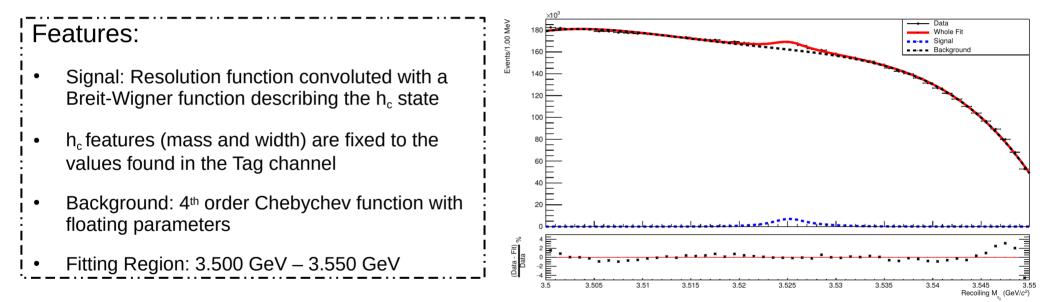
Good I/O Good I/O Output features are within 2σ from the input values

Data Fit Procedure


Binned (1 bin/MeV) fit of each channel (Inclusive and Tagged), where:


- In the Tagged channel, the $\rm h_{c}$ mass and width, and the background parameters are allowed to float;
- In the Inclusive channel, the h_c mass and width are fixed to the values found in the Tagged channel, and the background parameters are allowed to float.

The fit is performed maximizing the profile-likelihood ratio, and makes use of MIGRAD, HESSE (for better error estimation) and MINOS (for single parameter optimization)

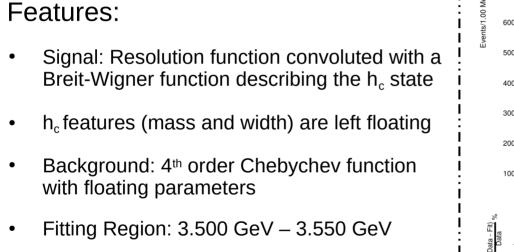

2012 Data Tagged Channel

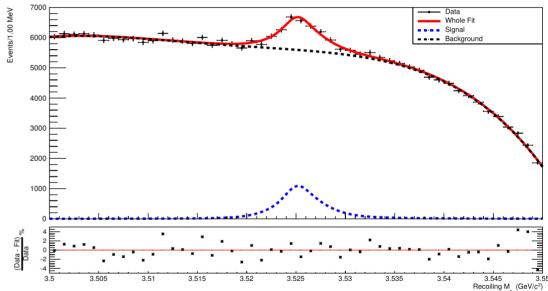
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2012 Data Inclusive Channel

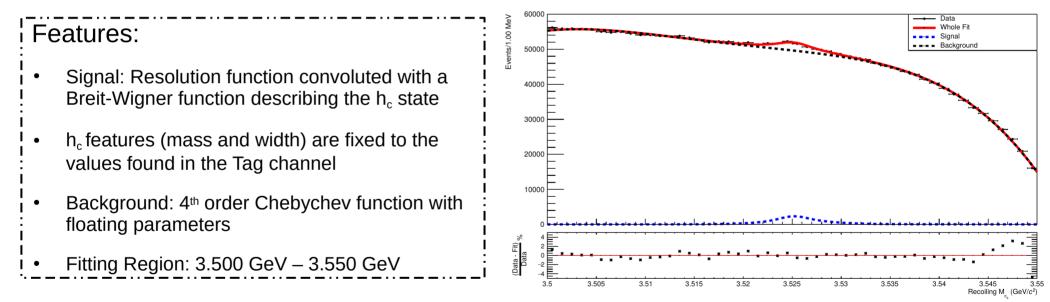
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2012 Data Results


Feature [Unit of Measurement]	Value	PDG
$M(h_c)$ [MeV]	3525.19 ± 0.07	3525.38 ± 0.11
$\Gamma(h_c)$ [MeV]	1.06 ± 0.36	$0.70 \pm 0.28 \pm 0.22$
$\mathcal{B}_1(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}_2(h_c \to \gamma \eta_c) [10^{-4}]$	3.42 ± 0.28	4.3 ± 0.4
$\mathcal{B}_1(\psi(2\mathrm{S}) o \pi^0 \mathrm{h}_c) \ [10^{-4}]$	7.41 ± 0.36	8.6 ± 1.3
$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	46.18 ± 4.37	51 ± 6

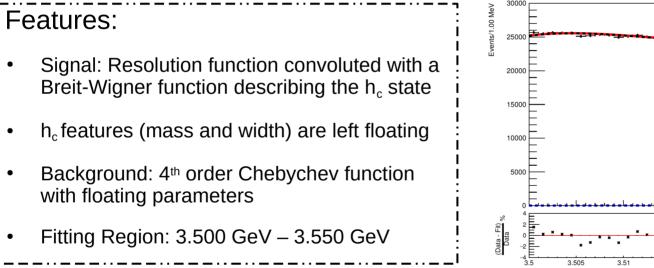

Decay and resonance features are compatible with the PDG within $\textbf{1.5}\sigma$

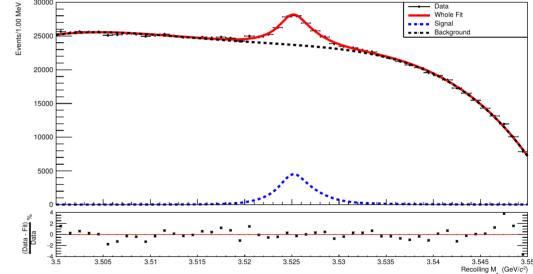
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


2009 Data Tagged Channel

2009 Data Inclusive Channel

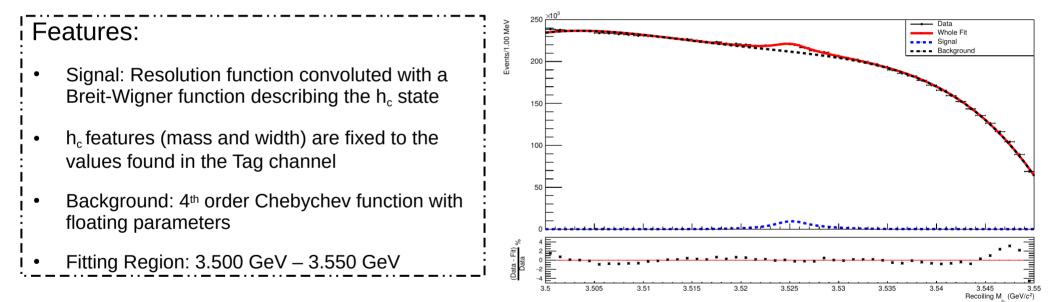
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


2009 - 2012 Comparison


Feature [Unit of Measurement]	2009 Value	2012 Value
$M(h_c)$ [MeV]	$3525.20 \ {}^{+\ 0.13}_{-\ 0.12}$	3525.19 ± 0.07
$\Gamma(h_c)$ [MeV]	$1.49 \ ^{+ \ 0.61}_{- \ 0.56}$	1.06 ± 0.36
$\mathcal{B}_1(\psi(2S) \to \pi^0 h_c) \times \mathcal{B}_2(h_c \to \gamma \eta_c) [10^{-4}]$	$3.87 {}^{+ 0.54}_{- 0.50}$	3.42 ± 0.28
$\mathcal{B}_1(\psi(2\mathrm{S}) o \pi^0 \mathrm{h}_c) \ [10^{-4}]$	8.49 ± 0.69	7.41 ± 0.36
$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	$45.53 {}^{+\ 7.34}_{-\ 6.98}$	46.18 ± 4.37

Decay and resonance features of the 2 data-sets are **compatible** within **1.5** σ

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


2009+2012 Data Tagged Channel

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2009+2012 Data Inclusive Channel

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2009+2012 Data Comparative results

Feature [Unit of Measurement]	2009 Value	2012 Value	2009+2012 Value
$M(h_c)$ [MeV]	$3525.20 \ {}^{+\ 0.13}_{-\ 0.12}$	3525.19 ± 0.07	3525.19 ± 0.06
$\Gamma(h_c)$ [MeV]	$1.49 \ ^{+ \ 0.61}_{- \ 0.56}$	1.06 ± 0.36	$1.19 {}^{+ 0.31}_{- 0.33}$
$\mathcal{B}_1(\psi(2\mathrm{S}) \to \pi^0 \mathrm{h}_c) \times \mathcal{B}_2(\mathrm{h}_c \to \gamma \eta_c) \ [10^{-4}]$	$3.87 {}^{+ 0.54}_{- 0.50}$	3.42 ± 0.28	$3.89 {}^{+ 0.28}_{- 0.29}$
$\mathcal{B}_1(\psi(2\mathrm{S}) ightarrow \pi^0 \mathrm{h}_c) \ [10^{-4}]$	8.49 ± 0.69	7.41 ± 0.36	8.44 ± 0.35
$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	$45.53 {}^{+ 7.34}_{- 6.98}$	46.18 ± 4.37	$46.09 {}^{+ 3.85}_{- 3.89}$

Decay and resonance features of the data-sets are **compatible** within **1.5**σ.

The table shows as well that the scaling of the absolute errors with the increase of $\psi(2S)$ events follows the expected ratio **1:0.56:0.49**.

Angular Distribution of the E1 photon

The angular distribution of the E1 photons is obtained by fitting separately the (corrected in efficiency) number of events in the h_c peak for different $cos(\theta)$ ranges, where θ is the angle between the E1 photon and the beam direction in the h_c frame.

Bin	Efficiency [%]	δ Efficiency [%]
$0 \le \cos(\theta) < 0.1$	15.52	0.01
$0.1 \le \cos(\theta) < 0.2$	15.58	0.01
$0.2 \le \cos(\theta) < 0.3$	15.68	0.01
$0.3 \le \cos(\theta) < 0.4$	15.75	0.01
$0.4 \le \cos(\theta) < 0.5$	15.82	0.01
$0.5 \le \cos(\theta) < 0.6$	16.32	0.01
$0.6 \le \cos(\theta) < 0.7$	16.58	0.01
$0.7 \le \cos(\theta) < 0.8$	16.63	0.01
$0.8 \le \cos(\theta) < 0.9$	16.74	0.01
$0.9 \le \cos(\theta) < 1.0$	16.33	0.01

 γ angular distribution in the h -> γ η decay Data Preliminary Fit N(1 + $\cos^2(\theta)$) 20000 18000 16000 14000 Fit Shape: N(1+ α cos²(θ)) 12000 $\alpha = 0.26 \pm 0.98$ 10000 0.2 0.4 0.6 0.8 cos(0*

Systematic Errors

Bin.

Different binning ratios were tested (ranging from 1 MeV/bin to an unbinned fit).

Fitting region.

The boundaries of the signal region (3.500 - 3.550) were changed of 5 MeV on both sides and of 10 MeV on the lower side.

Background functional shapes. (ongoing)

Tag channel:

 3^{rd} and 5^{th} order Chebychev

ARGUS (re-wegihted)

MC Shape re-weighted

Inclusive channel:

3rd and 5th order Chebychev

ARGUS (re-weighted)

MC Shape re-weighted

TO BE DONE:

Signal MC production. The information from the Angular Distribution will be used to correct the signal MC data sets.

Photon energy calibration.

Mass ranges for veto. Due to the wide plateau in the FoM plot for the background suppression, different (less strict) ranges will be tested.

 $\pi^{\rm 0}$ selection. The 2y invariant mass will be changed by 10 MeV on both sides, affecting both the tag and inclusive channel.

Conclusions

Next Steps

Fits on data sets are all under control and compatible among them	-:
The statistical errors scale as expected	i
Angular distribution for the E1 photon is under study, a preliminary fit was performed to determine its shape	1
Systematic errors are under study	¦

Finalize the angular distribution study Finish to assess the systematic errors Upload the updated Memo on Hypernews

Thanks for your altention

BACK UP SLIDES

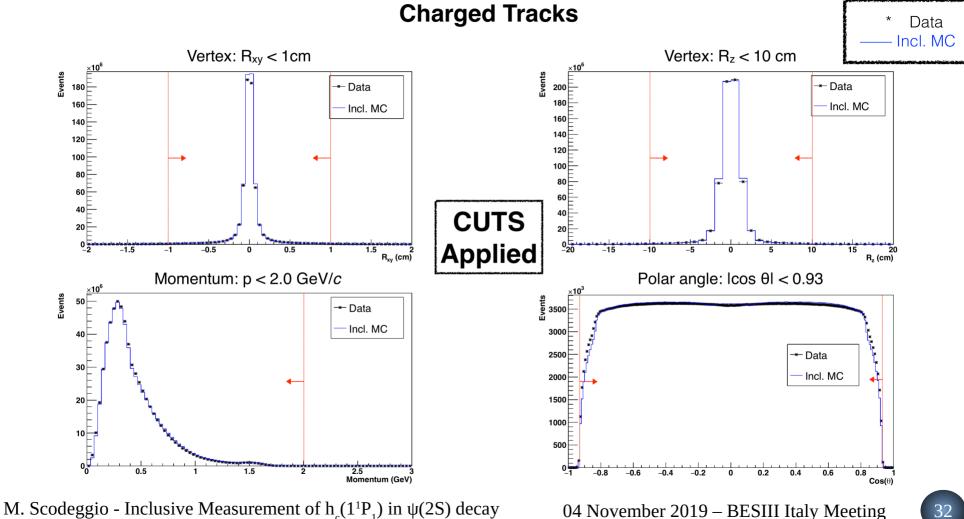
Charmonium Spectroscopy h_c(1¹P₁)

Mass [MeV]	Width [MeV]	$\Delta_{hyp} [\text{MeV}]$	Experiment	
$3525.4 \pm 0.8 \pm 0.4$	-	-	R704	
$3526.28 \pm 0.18 \pm 0.19$	< 1.1	-	$E760^*$	
3527 ± 8	-	-	E705	
$3524.4 \pm 0.6 \pm 0.4$	-	$1.0\pm0.6\pm0.4$	CLEO-c].
$3525.8 \pm 0.2 \pm 0.2$	$0.5 < \Gamma < 1.1$	-	$E835^*$	
$3525.20 \pm 0.18 \pm 0.12$	-	$0.02 \pm 0.19 \pm 0.13$	$CLEO-c^*$	
3525.6 ± 0.5	-	-	CLEO-c	
$3525.40 \pm 0.13 \pm 0.18$	< 1.44	$-0.10 \pm 0.13 \pm 0.18$	BESIII*	ľ
$3525.31 \pm 0.11 \pm 0.14$	$0.70 \pm 0.28 \pm 0.22$	$-0.01 \pm 0.11 \pm 0.15$	BESIII*	

Baglin *et al.*, Phys. Lett. B 171, Issue 1
T.A. Armstrong *et al.*, Phys. Rev. Lett. 69, 2337
L. Antoniazzi *et al.*, Phys. Rev. D 50, 4258
J. L. Rosner *et al.*, Phys. Rev. Lett. 95, 102003
M. Andreotti *et al.*, Phys. Rev. D 72, 032001
S. Dobbs *et al.*, Phys. Rev. Lett. 101, 182003
G. S. Adams *et al.*, Phys. Rev. D 80, 051106
M. Ablikim *et al.*, Phys. Rev. Lett. 104, 132002
M. Ablikim *et al.*, Phys. Rev. D 86, 092009

Summary of the h_c mass and width measurements. The * represents the measurements used by the PDG "for averages, fits, limits, etc.".

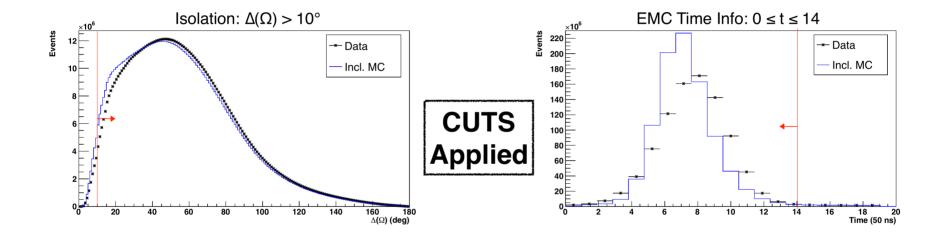
Branching Ratios

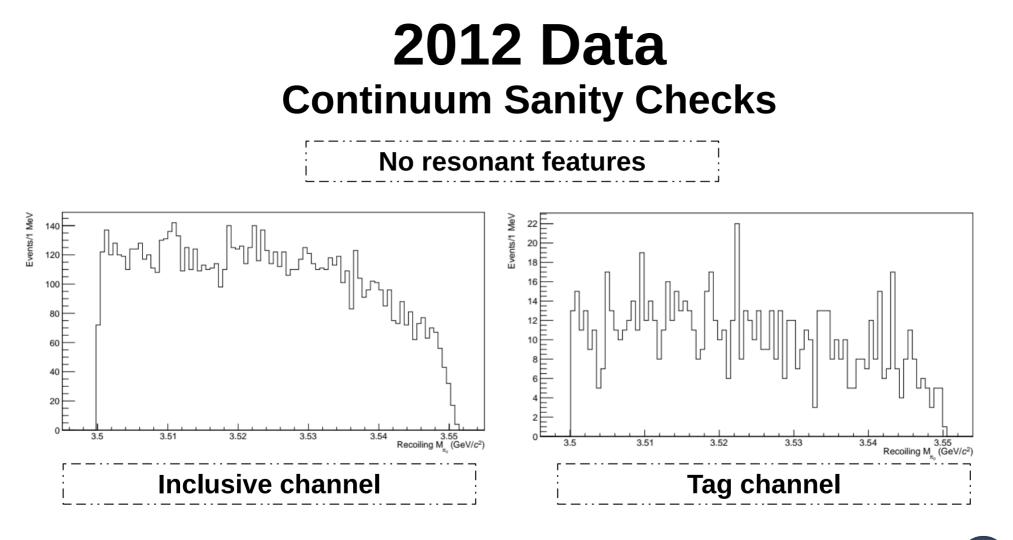

Signal

 $\psi(2S) \to \pi^0 h_c \qquad \qquad \mathcal{BR} = (8.6 \pm 1.3) \times 10^{-4} \\ h_c \to \gamma \eta_c \qquad \qquad \mathcal{BR} = (51 \pm 6) \%$

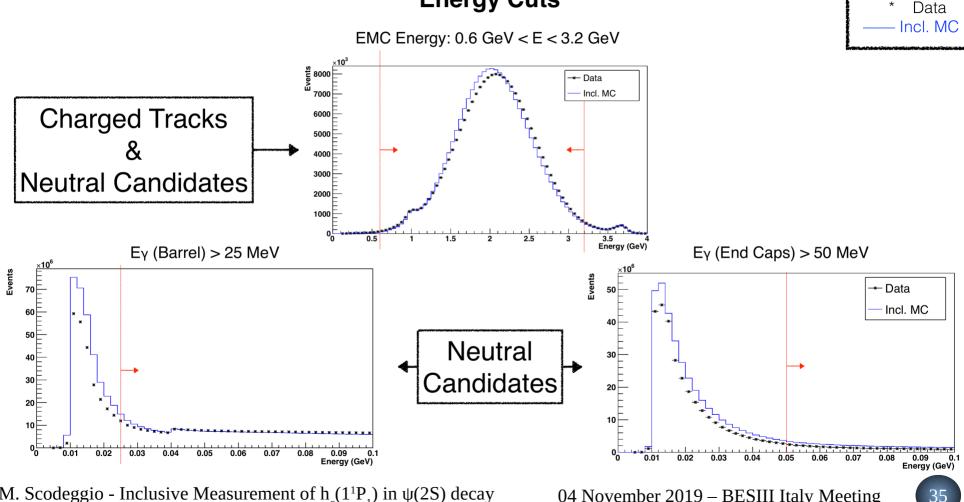
Background

$\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$	$\mathcal{BR} = (34.49 \pm 0.30) \%$
$\psi(2S) ightarrow \pi^0 \pi^0 J/\psi$	$\mathcal{BR} = (18.17 \pm 0.31) \%$
$\psi(2S) \to \gamma \chi_{c0}$	$\mathcal{BR} = (9.99 \pm 0.27) \ \%$


General Selection Criteria

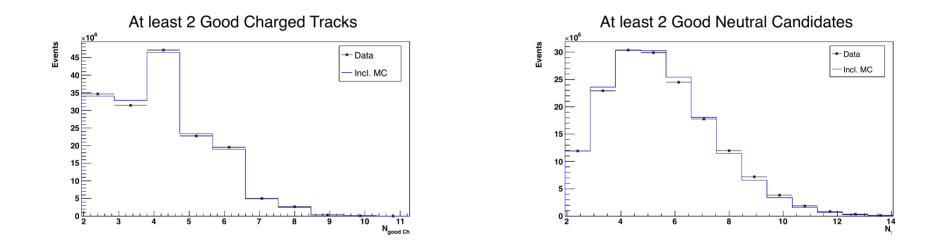

General Selection Criteria

Neutral Candidates



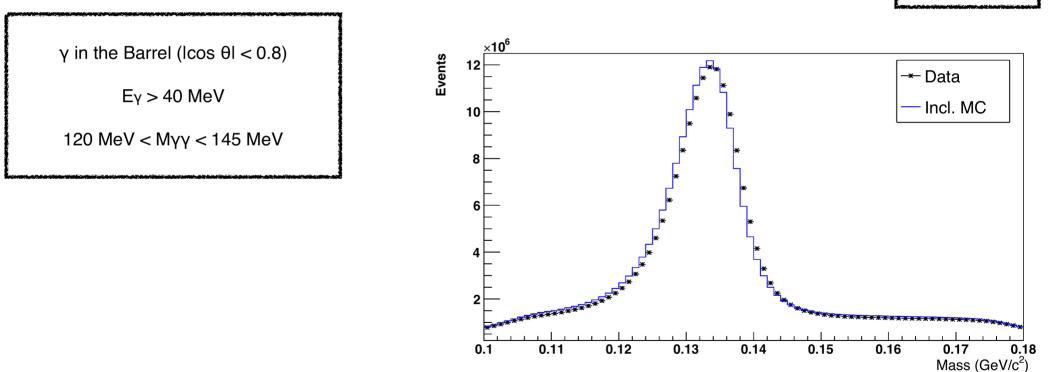
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

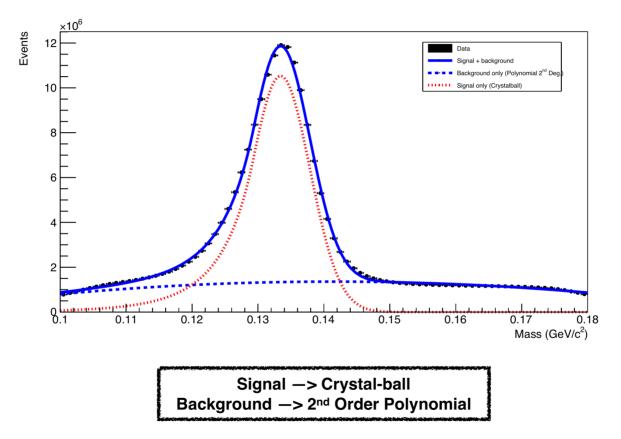

General Selection Criteria Energy Cuts

General Selection Criteria

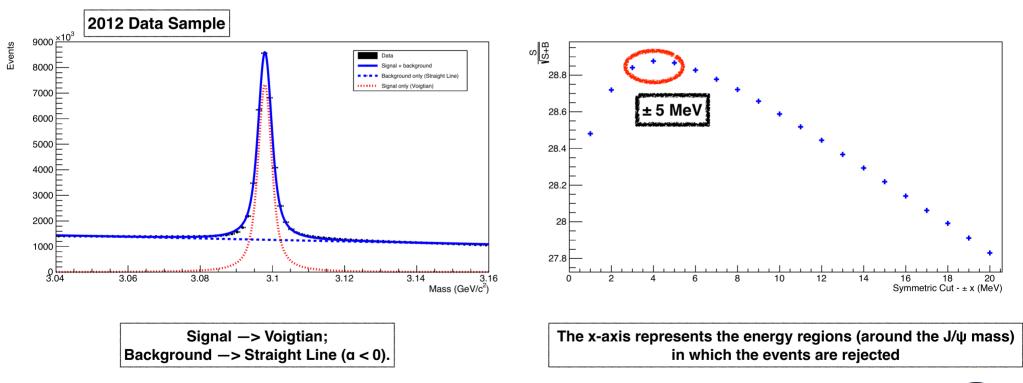
Number of Good Charged Tracks and Good Neutral Candidates


* Data —— Incl. MC

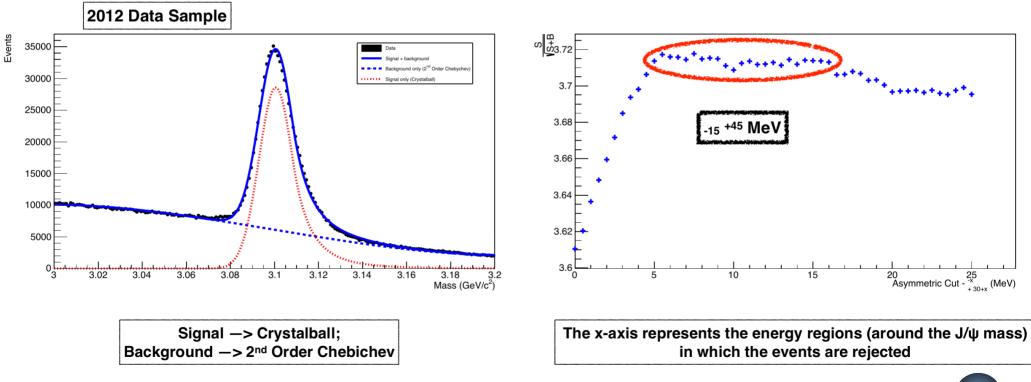
M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


Recoiling π⁰ Selection

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


Recoiling π⁰ Selection

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


Background evaluation & Suppression $\psi(2S) \rightarrow \pi^{+} \pi^{-} J/\psi$

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Background evaluation & Suppression $\psi(2S) \rightarrow \pi^{0} \pi^{0} J/\psi$

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2010 Analysis Efficiencies and BR Estimation

 $\begin{array}{c} \mathbf{1} \\ \epsilon_1^{E1} \text{ is the event selection efficiency in the inclusive analysis of } \psi(2S) \to \pi^0 h_c, \\ h_c \text{ is forced to decay to } \gamma \eta_c. \end{array}$

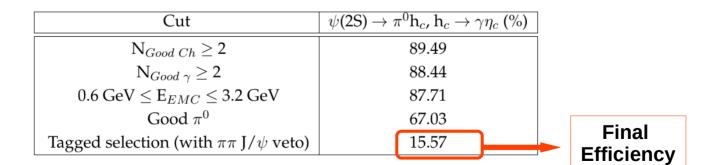
 ϵ_1^{had} is the event selection efficiency in the inclusive analysis of $\psi(2S) \to \pi^0 h_c$, h_c is forced to decay to other final states (generated by PYTHIA).

 ϵ_{12} is the event selection efficiency in the E1-photon-tagged analysis of $\psi(2S) \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$.

$$\mathcal{B}_{1}(\psi(2S) \to \pi^{0}\mathbf{h}_{c}) \times \mathcal{B}_{2}(\mathbf{h}_{c} \to \gamma\eta_{c}) = \frac{N_{E1}}{\epsilon_{E1} \times N(\psi(2S))}$$

$$\mathcal{B}_{2}(\mathbf{h}_{c} \to \gamma\eta_{c}) = \frac{\frac{\epsilon_{had}^{Incl}}{\epsilon_{E1}}}{\frac{N_{tot}}{N_{E1}} + \frac{\epsilon_{had}^{Incl} - \epsilon_{E1}^{Incl}}{\epsilon_{E1}}}$$

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


2009 Efficiency Study Tagged Channel

Signal MC Sample of 300k events

Decay psi(2S)

1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay

Decay h_c 1.0000 gamma eta_c AngSam 1.0 1.0; Enddecay

End

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

2009 Efficiency Study Inclusive Channel

Signal MC Sample of 300k events

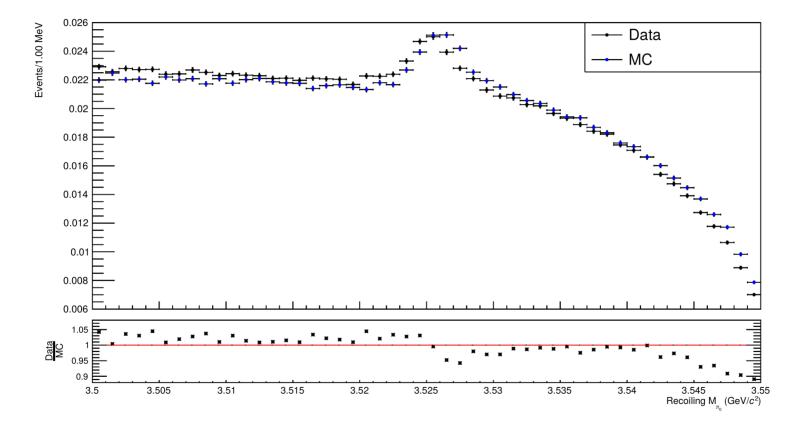
Decay psi(2S) 1.0000 h_c pi0 HELAMP 0 0 1 0 0 0; Enddecay End

Cut	$\psi(2S) \rightarrow \pi^0 h_c$ (%)	
$N_{Good\ Ch} \geq 2$	91.54	
$\mathrm{N}_{Good \; \gamma} \geq 2$	90.23	
$0.6~{ m GeV} \le { m E}_{EMC} \le 3.2~{ m GeV}$	89.55	
Good π^0	71.05	Final
Inclusive selection (with $\pi\pi$ J/ ψ veto)	16.83	Efficiency

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Sidebands method. Similar as performed in Ref. [8], the sidebands method consists of taking the background shape of the recoiling π^0 mass spectrum in the sidebands of the γ_{E1} . The sidebands were constructed by requesting that no photon had an energy between 400 MeV - 600 MeV (i.e. $E_{\gamma_{E1}} < 400 \text{ MeV} \& E_{\gamma_{E1}} > 600 \text{ MeV}$).

Signal MC shape. This method consists of taking the background shape from the Inclusive MC sample purged by the signal events. The drawback of this method is that cannot be used to fit the data due to the mismodeling as shown in Fig. 28.


Extremities fit. This method consists of taking the signal region and blinding the portion in which the h_c signal is found, in order to fit the lower ([3.500 GeV - 3.520 GeV]) and upper ([3.530 GeV - 3.550 GeV]) extremities with a 4th order Čebyšëv polynomial constraining its parameters.

Fixing the Čebyšëv parameters. This method, similar to the previous one, makes use of a "*control region*" (CR) to constrain the Čebyšëv parameters. The CR would be the same aforementioned sidebands region of the γ_{E1} .

Free-to-float-parameters. This method simply consists of leaving the 4th order Čebyšëv parameters free to float, adding four additional constraints to the whole model.

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

04 November 2019 – BESIII Italy Meeting

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Feature [unit of measurement]	Input	Float Čeby. Param.	Extr. Fit
$M(h_c)$ [MeV]	3525.93	3526.03 ± 0.06	3526.07 ± 0.05
$\Gamma(h_c)$ [MeV]	1.00	1.38 ± 0.26	$0.89 {}^{+ 0.20}_{- 0.21}$
$\mathcal{B}_1(\psi(2\mathrm{S}) \to \pi^0 \mathrm{h}_c) \times \mathcal{B}_2(\mathrm{h}_c \to \gamma \eta_c) \ [10^{-4}]$	4.34	$4.26 {}^{+ 0.25}_{- 0.24}$	$3.69 {}^{+ 0.13}_{- 0.14}$

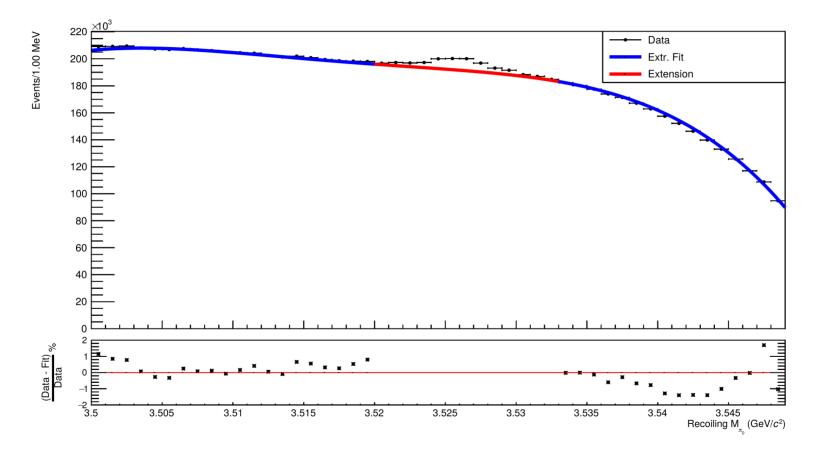
Feature [unit of measurement]	Input	SB Shape	SB Fix Čeby. Param.
$M(h_c)$ [MeV]	3525.93	3526.01 ± 0.05	3526.03 ± 0.06
$\Gamma(h_c)$ [MeV]	1.00	0.65 ± 0.32	0.96 ± 0.19
$\mathcal{B}_1(\psi(2\mathrm{S}) \to \pi^0 \mathrm{h}_c) \times \mathcal{B}_2(\mathrm{h}_c \to \gamma \eta_c) \ [10^{-4}]$	4.34	3.22 ± 0.18	3.80 ± 0.13

Table 10: I/O comparison of different background fitting methods for the Tag channel. In both the table on top the two methods shown are the *free-to-float* 4^{th} order Čebyšëv polynomial parameters method and the *extremities fit* one. In the table below the two methods that make use of the sidebands are presented. One can notice from the comparison of these four methods that leaving the parameters free to float provides a better estimation of the features, despite increasing the absolute errors (which is due to the increase of free parameters.

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Inclusive Channel Background Fitting Methods Comparison

Good π^0 **sidebands method.** Similarly to the method mentioned for the Tag channel, the method makes use of sidebands region. Here, the sidebands were constructed by rejecting any good π^0 in the signal region² The problem of this method is that this sidebands region does not describe well the signal background (as shown in Fig. 31).


Signal MC shape. This method consists of taking the background shape from the Inclusive MC sample purged by the signal events. The drawback of this method is that cannot be used to fit the data due to the mismodeling as shown in Fig. 31

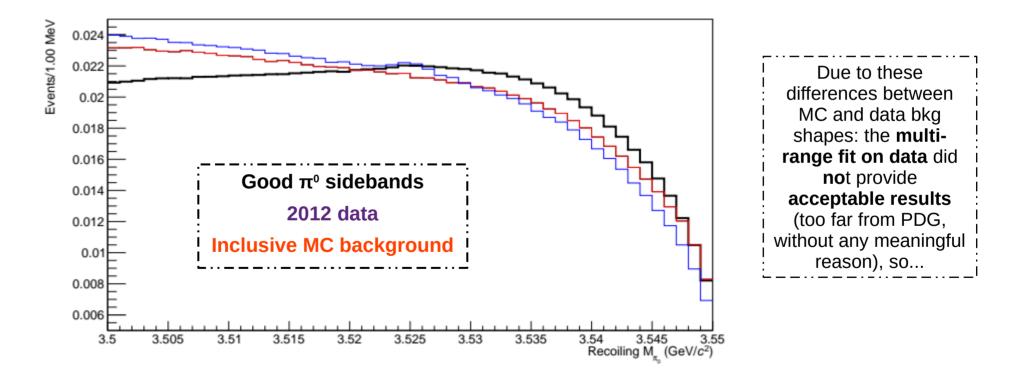
Extremities fit. This method (shown in Fig. 29) consists of taking the signal region and blinding the portion in which the h_c signal is found, in order to fit the lower ([3.500 GeV - 3.520 GeV]) and upper ([3.533 GeV - 3.549 GeV]) extremities with a 4th order Čebyšëv polynomial constraining its parameters.

A scan study was performed to select the best configuration for such a fit: different intervals for both the lower and upper extremities were tested. The best configuration was chosen such that the percentile difference between the Data and the Fit of said configuration was below 2%.

Free-to-float-parameters. This method simply consists of leaving the 4^{th} order Čebyšëv parameters free to float, adding four additional constraints to the whole model.

Inclusive Channel Background Fitting Methods Comparison

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay


U	Feature [unit of measurement]	Input	Float Čeby. Param.	Extr. Fit
Ĭ	$\mathcal{B}_1(\psi(2\mathrm{S}) ightarrow \pi^0 \mathrm{h}_c) \ [10^{-4}]$	8.50	10.08 ± 0.36	8.47 ± 0.26
	$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	51	$42.21 {}^{+\ 2.89}_{-\ 2.82}$	$50.24 {}^{+ 3.32}_{- 3.23}$

в	Feature [unit of measurement]	PDG	Float Čeby. Param.	Extr. Fit
2	$\mathcal{B}_1(\psi(2\mathrm{S}) o \pi^0 \mathrm{h}_c) \ [10^{-4}]$	8.6 ± 1.3	7.41 ± 0.36	5.97 ± 0.26
-	$\mathcal{B}_2(h_c o \gamma \eta_c)$ [%]	51 ± 6	46.18 ± 4.67	57.37 ± 5.68

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Data

2012 Data Inclusive Channel Background Comparison

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

Angular Distribution of the $V. pp \rightarrow (\psi, P_1) \rightarrow \gamma \eta_c$ These decays proceed by only one multipole, *M*1 for

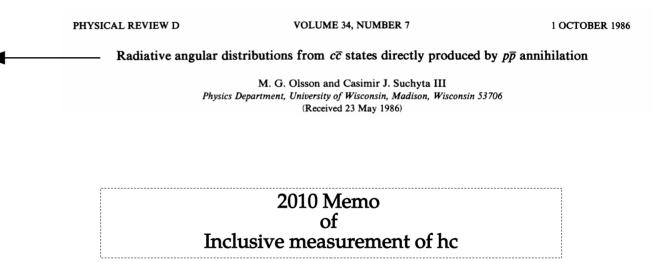
 $\psi \rightarrow \gamma \eta_c$ and E1 for ${}^1P_1 \rightarrow \gamma \eta_c$, so we have

 $a_1 = A_0 = 1$. (23)

For these states the angular distributions are

$$\frac{32\pi^2}{3}\widehat{W}(\theta;\theta',\phi') = (K_1 + K_2\cos^2\theta) ,$$

$$K_1 = 1 - \frac{1}{2}R ,$$


$$K_2 = \frac{3}{2}R - 1 ;$$

$$\widehat{W}(\theta) = \widehat{W}(\pi/2)(1 + \alpha \cos^2 \theta) ,$$

$\alpha=\frac{3R-2}{2-R};$	(25a)
$\widehat{W}(\theta') = \frac{1}{2};$	(25b)
$\widehat{W}(\phi') = rac{1}{2\pi}$.	(25c)

For $\psi \rightarrow \gamma \eta_c$, $\psi' \rightarrow \gamma \eta_c$, and $\psi' \rightarrow \gamma \eta'_c$ transitions, the angular distribution $\widehat{W}(\theta)$ depends on R varying from $1 + \cos^2 \theta$ for R = 1 to $\sin^2 \theta$ for R = 0.

Because of C-parity conservation the B_1 helicity state does not enter into 1P_1 production. Since the 1P_1 state is formed by pure R = 0, the decay-angular distribution is uniquely $\sin^2\theta$.

The angular distribution of the h_c signals is fitted with the function $N(1 + \alpha \cos^2 \theta^*)$ as shown in Figure 14, leading to $\alpha = 0.92 \pm 0.80$. This is consistent with the $\alpha = 1$ expected for an E1 transition from $h_c(J^{pc} = 1^{+-})$ to $\eta_c(J^{pc} = 1^{-+})$.

M. Scodeggio - Inclusive Measurement of $h_c(1^1P_1)$ in $\psi(2S)$ decay

(24)

04 November 2019 – BESIII Italy Meeting

