

$\psi(2S) \rightarrow \tau \tau$ A way to test Lepton Flavor Violation @ BESIII

I. Garzia, Università degli studi di Ferrara L. Lavezzi, INFN Sezione di Torino

> BESIII-IT Meeting Perugia, November 4, 2019

LF Universality Violation

Lepton Flavor Universality violation accessed by BaBar and Belle studying the ratio:

$$R(D^{(*)}) \equiv \frac{\Gamma(B \to D^{(*)} \tau \nu)}{\Gamma(B \to D^{(*)} \ell \nu)}, \quad (\ell = e, \mu)$$

SM: $R(D) = 0.403 \pm 0.047, \quad R(D^*) = 0.310 \pm 0.017,$
SM: $R(D) = 0.300 \pm 0.008, \quad R(D^*) = 0.252 \pm 0.003.$

The combined results show a deviation from SM prediction of a level of 3.9σ

• new physics only in the τ channel decay

<u>JHEP 06 (2017) 019</u>

IDEA: $\psi(2S) \rightarrow \tau \tau$

New observables for test the LFU violation: non-universality in leptonic decays of ψ and Υ quarkonia

- same mechanism as for the $R(D^{(*)})$
- only the V $\rightarrow \tau\tau$ decay is affected by NP

$$R_{\tau/\ell}^V \equiv \frac{\Gamma\left(V \to \tau^+ \tau^-\right)}{\Gamma\left(V \to \ell^+ \ell^-\right)}, \quad (V = \psi, \Upsilon; \ \ell = e, \mu),$$

V(nS)	SM prediction	Exp. value $\pm \sigma_{\text{stat}} \pm \sigma_{\text{syst}}$
$\Upsilon(1S)$	$0.9924 \pm \mathcal{O}(10^{-5})$	$1.005 \pm 0.013 \pm 0.022$
$\Upsilon(2S)$	$0.9940 \pm \mathcal{O}(10^{-5})$	$1.04 \pm 0.04 \pm 0.05$
$\Upsilon(3S)$	$0.9948 \pm \mathcal{O}(10^{-5})$	$1.05 \pm 0.08 \pm 0.05$
$\psi(2S)$	$0.390 \pm \mathcal{O}(10^{-4})$	0.39 ± 0.05

Depending of the model, LFU violation for $\psi(2S)$ at 95% C.L. is predicted to be:

$$R^{\psi(2S)}_{ au/\ell} = 0.389 - 0.390.$$

LFU violation at BESIII?

Rinaldo's suggestion

BR7's talk in Perugia

Analysis: event and track selection

4

Study of $\psi(2S) \rightarrow \tau \tau \rightarrow e \mu 4 \nu \text{ decay}$

Charged tracks

- Vertex cut: R_{xy} <1cm and R_z <10cm
- polar angle of tracks in MDC: |cosθ|<0.93
- ptrk < 1.2 GeV (remove Bhabha and dimuon events)
- pt>0.2 GeV/c
- nCharged=2

- Neutral candidates
- EMC time cut: $0 < t_{TDC} < 14(/50ns)$
- E_γ >0.025 GeV for the barrel (<u>|(cos(θ)| < 0.8)</u>, and E_γ>0.050 GeV for the endcap (<u>0.86<</u>] (cos(θ)| <0.92)
- Isolated γ : opening angle between photon and its nearest charged tracks $\theta_{\gamma-tr}$ > 20°
- nGamma = 0
- Enel < 0.2 GeV

Decay psi(25 1.0000 t Enddecay	;) au+ tau-	PHOTOS VLL;		
Decay tau+ 1.0000 e+ Enddecay	• nu_e anti-nu_tau	PHOTOS TAULNU	NU;	
Decay tau- 1.0000 mu Enddecay	– anti–nu_mu nu_tau	PHOTOS TAU	LNUNU;	
End	Decay psi(2S) 1.0000 tau+ t Enddecay	au-	PHO)TOS VLL;
	Decay tau+ 1.0000 mu+ nu_m Enddecay	u anti-nu_tau	Pł	HOTOS TAULNUNU;
	Decay tau- 1.0000 e- anti- Enddecay	-nu_e nu_tau	PHO	TOS TAULNUNU;
	End			

- Release 664p03
- 200000 events simulated: $\psi(2S) \rightarrow \tau \tau \rightarrow e^{\mp} \mu^{\pm} 4\nu$
- 2009 MC inclusive $\psi(2S)$ sample
- 2009 $\psi(2S)$ data sample

Some distributions I

 $\psi(2S) \rightarrow \tau \tau \rightarrow e \mu 4 \nu$ signal

٠

٠

PID studies

muc_dep>81*(ptrk-0.65) muc_dep 50 Muons 40 93% 30 20 10 0 0.2 0.4 0.6 0.8 1.2 1.4 1 ptrk

some numbers

Electron PID

- 0.8 < E/p < 1.1
- χ2_{dE/dx} (e)< 4
- I Δtof(e) < 0.3 ns</p>

Muon PID

- E/p < 0.7
- $\chi 2_{dE/dx}(\mu) < 4$
- |∆tof(µ)|<0.3 ns
- o muc_dep>81*(ptrk-0.65)

	numbers after each cut: MC signal	numbers after each cut: data09 subsample	numbers after each cut: InclMC09 subsample
total number	80000	16960604	6616952
iGood.size()==2	60390	224222	1142300
EMCch > 25 MeV	60383	222152	1136424
nGamma = 0	54312	26847	41251
n_emu	19975	258	901
n_mumu	0	1367	3186
n_ee	6	2130	288 ?

Additional cuts I

Additional cuts II

tof {tof<6&&tof>2} htemp Entries 24052 1600 3.317 Mean signal MC 0.5161 Std Dev 1400 1200 1000 800 600 400 200 0 2 2.5 3.5 5.5 3 4.5 4 5 tof Entries 1000 eµ tracks 800 data09 Incl09 600 400 200 0^L 2.5 3 3.4 MissingMass (GeV/c2) 2 3.5 0.5 1.5

- |cosθ_miss| < 0.8 or
 0.86<|cosθ_miss| < 0.92
- energyDep < 2 (sum of deposit energy of the two tracks)

Plans and Conclusions

- Event and track selection optimization almost finished
- Check on 2012 data set ongoing
 - Data-MC comparison: try to understand the observed discrepancies
- Study of background sources
 - Evaluation of continuum contribution

Thanks for your allention

Background sources

In order to check what stated, we simulate a small MC sample of $\psi(2S) \rightarrow J/\psi \pi \pi$, $J/\psi \rightarrow \ell \ell$ events. We applied the same event and track selection described before and we looked at the missing mass and energy distributions:

Other background sources: $\psi(2S) \rightarrow \tau^+ \tau^- \rightarrow e \nu \nu \pi \nu$