The High Altitude Water Cherenkov (HAWC) telescope Synergy with Fermi

Nicola Omodei, Stanford University for the HAWC Collaboration Second GraviGamma Workshop

Latitude: 18°59.7'N HAWC Longitude: 97°18.6'W

Pico de Orizaba 5636 m a.s.l.

Sierra Negra Large Millimetric Telescope 4640 m a.s.l.

HAWC 4100 m a.s.l.

HAWC: High Altitude Water Cherenkov

> 300 close-packed optically isolated water Cherenkov detectors Construction began early 2012 Full detector inaugurated March 2015 Funding from a combination of US and Mexican agencies High energy extension: Outrigger array, since summer 2018

Water Cherenkov Detectors

Light-blocking Purified dome water **Particle path**

Watertight liner Photosensors Steel water tank

Water Cherenkov Detectors

Shower reconstruction

- Measure: time and light level in each PMT.
- Reconstruct: direction, location, energy, and background rejection.
- Reference: Crab paper, ApJ 843 (2017), 39.

ch PMT. hergy, and background rejectic 017), 39.

Shower reconstruction

- Measure: time and light level in each PMT.
- Reconstruct: direction, location, energy, and background rejection.
- Reference: Crab paper, ApJ 843 (2017), 39.

N. Omodei | HAWC Highlights

Smooth: gamma-like SFCF Fit PINC Moving Average $<\zeta>$ Q_{eff} $\log_{10}(\mathsf{Q}_{eff})$ 140 80 100 140 **^** 20 120 40 60 PMT Distance to Reconstructed Core [m]

Outriggers Array: High Energy Extension

> 350 small tanks in addition to the 300 large tanks.

N

- Improve core localization for showers near the main array.
- > x4 effective area at high energy.
- > 100% taking data since last summer.

Source search and characterization

- Likelihood framework use *n* maps to test the presence of sources then characterize them. ≻
- Reference: Crab paper, ApJ 843 (2017), 39.

N. Omodei | HAWC Highlights

Events sorted by "size" in n bins (with characteristic Point Spread Function, S/N ratio, energy), make n maps.

Performance

- Wide field (~2 sr), covers 2/3rd of the sky daily.
- Duty cycle > 90%.
- Sensitive to point sources and extended sources.
- Large exposure provides high energy reach.
- Sensitive from 100s of GeV to >100 TeV.

Wide-field/Continuous Operation

TeV Sensitivity

Fermi-LAT (GeV)

HAWC ARGO-YBJ Milagro (ret.)

VERITAS HESS MAGIC FACT CTA (future)

Sky — GeV gamma rays: thousands of sources

Fermi-LAT 3FGL: 3k objects Image credit: NASA/DOE/Fermi-LAT Collaboration

HAWC 3.5 year skymap — 1128d livetime: 2014-11 to 2018-04

Mrk 421

Inner galactic plane

4 1 10 10 10 COL

Q° o

PRELIMINARY

Geminga & Monogem

Galactic Science

N. Omodei | HAWC Highlights

Inner Galactic plane — 1128d livetime (2014-11 to 2018-04)

N. Omodei | HAWC Highlights

New Sources: 2HWC J1953+294

- Telescopes
- confirmed.

N. Omodei | HAWC Highlights

> 2HWC J1953+294: No previously known TeV sources. Tentative association 3FGL J1951.6+2926 / PWN DA 495 Shared privately with Imaging Atmospheric Cherenkov

New observations plus archival data by VERITAS: source

► 2018ApJ...866...24A

New Sources: 2HWC J1928+177

- > 2HWC J1930+188 is a known TeV source associated to SNR G054.1+00.3, discovered by VERITAS source.
 - Source detected by Fermi LAT
 - Source consistent with SNRG54.1+0.3, a PWN at a distance of ~6.5kpc hosting a young, energetic pulsar, PSRJ1930+1852
- New source 2HWC J1928+177, likely associated with energetic PSR J1928+1746. Not seen by VERITAS, set a flux limit.
 - Fermi spectrum not consistent with HAWC: Fermi might detect emission from the pulsar and HAWC the emission from the PWN
- ► <u>2018ApJ...866...24A</u>

N. Omodei | HAWC Highlights

TeV halos

Extended source hypothesis (0.5°)

N. Omodei | HAWC Highlights

- Direct observation of electron diffusion around middle age pulsars
- Controversy about positron excess (Pamela, Fermi, AMS):
 - Dark Matter origin?
 - Local pulsar origin?

TeV halos: Geminga - Monogem (Science 2017)

> Very extended sources, $\sim 5^{\circ}$ (10x the Moon).

- Orders of magnitude larger than x-ray PWN.
- Yet ~10 times smaller than expected from usual diffusion coefficient.
 - Direct measurement of the electron and positron diffusion around the source: $D_{100TeV} = 4.5 \pm 1.2 \times 10^{27} \text{ cm}^2/\text{s}$

N. Omodei | HAWC Highlights

 $> D_{100TeV} \sim 100$ times smaller the ISM diffusion value derived from B/C ratio.

TeV halos: Geminga - Monogem, interpretations

HAWC Collaboration, Science (2017): Assuming uniform value diffusion constant, e⁺/e⁻ cannot reach Earth, Geminga does not explain the positron excess.

N. Omodei | HAWC Highlights

- Assuming variable diffusion constant, can possibly explain positron excess:
 - D. Hooper *et al.*, PRD 96, 103013 (2017)
 - ► K. Fang *et al.*, arXiv:1803.02640
 - S. Profumo et al., arXiv:1803.09731

Microquasar SS 433

Microquasar SS 433: lobes detection

Extragalactic Science

N. Omodei | HAWC Highlights

Monitoring of flaring sources

N. Omodei | HAWC Highlights

Monitoring AGN flares:

ATel #8922, #9137, #9936, #9946, #11077, #11194.

Many notifications under MoU.

Monitoring few hundreds sources on multiple time scales (seconds to days).

Flux >1 TeV [Crab Units]

Transients and multi-messenger

- HAWC can 1) send alerts 2) followup transients even after the fact
- No detection yet, but searches in coincidence with ► GRBs (ApJ 2017)
 - Gravitational Wave events (ApJ 2017, w. LIGO, Virgo, etc.)
 - IceCube PeV neutrinos (A&A 2017 w. IceCube, Fermi-LAT)
 - IceCube TXS 0506+056 flare (Science 2018 w. IceCube, Fermi-LAT, MAGIC and many more)
 - Joint IceCube / HAWC analysis to search for galactic neutrinos
- Self triggered transient (ApJ 2017)

HAWC FoV at the time of the GW events

IceCube TXS 0506+056 flare

N. Omodei | HAWC Highlights

Science 13 Jul 2018

Next generation — SGSO

Potential sites

SOUTHERN **GAMMA-RAY** SURVEY **OBSERVATORY**

- Proposed wide field of view instrument to be located in the southern hemisphere
- Several candidate sites considered, including in Argentina, Chile, Bolivia, and Peru
- ► Latitude of ~24° S optimizes sensitivity to Galactic sources, especially Galactic Center
- Improvements to sensitivity
 - Higher altitude: extend sensitivity to lower energies (aim for 200–300 GeV)
 - Larger detector
 - Better gamma/hadron separation
 - Better electronics

More info and join at: https://www.sgso-alliance.org

Summary

- Analyses are running, new sources are discovered and characterized, science results.
- HAWC uniquely suited for extended sources and high energy.
- New class of nearby TeV halos (Geminga, Monogem, ...), inefficient diffusion.
- First observation of jets in TeV: SS 443, likely leptonic.
- Exciting multi-messenger / multi-instrument activities.
- Public data available at <u>data.hawc-observatory.org</u>
- Strong Overlap with Fermi LAT Several projects ongoing
 - ThreeML for joint analysis between Fermi-VERITAS-HAWC (X-rays,...)

- urces and high energy. ya, Monogem, ...),
- , likely leptonic. Iment activities.

Dark matter searches

- ► Large sky coverage → variety of targets to look for annihilation or decay signal:
 - Dwarf Spheroidal Galaxies (ApJ 2017)
 - ► Galactic Halo (JCAP 2018)
 - Andromeda Galaxy (JCAP 2018)
 - All sky search
 - Sun (submitted, arXiv:1808.05624)
 - Virgo cluster
 - ► Etc.

N. Omodei | HAWC Highlights

max-60 rnax

Gamma-Ray Bursts

- Sensitivity studies show that brightest GRB can be detected by HAWC
- GRB 170206A with 11° zenith angle is the only GRB where the fluence implied by the HAWC upper limits in the HAWC energy range is below the Fermi-GBM fluence in the GBM energy range.
- The current limits on the GRB detection rate in HAWC still do not allow strong conclusions about the distribution of the highenergy photon index or cut-offs and more years of operation are needed for definite conclusions.

Slide from V. Baghmanyan

Public data: data.hawc-observatory.org

- Some dataset already available, planning to add more:
 - Significance and flux maps corresponding to the 2HWC paper (507d livetime).
 - Geminga & Monogem dataset.
 - Daily light curves (2014-11-26 to 2016-04-20):
 - Crab
 - Mrk 421
 - Mrk 501

Please use for your own analysis, and/or contact us if you want more information!

E.g.: D. Hooper and T. Linden, 2018, arXiv:1803.0408

N. Omodei | HAWC Highlights

Sky — visible wavelength: billions of sources

Gaia DR2: I.7 B objects Image credit: ESA/Gaia/DPAC

Sky — TeV gamma-rays: ~150 sources

000

PRELIMINARY

TeVCat: ~150 objects Image: HAWC

Sky — TeV gamma-rays: ~150 sources

Q° A

More messengers: UHE cosmic rays Gravitational waves: 7

PRELIMINARY

Neutrinos: diffuse, +1 source

100 TeV gamma rays?

TeVCat: ~150 objects Image: HAWC

Tank Construction

N. Omodei | HAWC High

HAWC Construction

Pushing to the highest energies: New energy reconstruction

- events are not differentiated.
- amplitude, zenith angle, etc.
- Break degeneracy, increase energy dynamic range.
- Best performance above 10 TeV, far from threshold effects.

N. Omodei | HAWC Highlights

So far, use the number of PMT seeing light as energy proxy. 10 and 50 TeV

New energy estimators (neural network, ground parameter) using signal

Pushing to the highest energies ($E_{reco} > 56$ TeV)

- studies ongoing.
 - Acceleration mechanisms: hadronic?
 - Correlation with neutrinos?
 - Prospects for testing Lorentz Invariance Violation.

N. Omodei | HAWC Highlights

Preliminary! Caveats: Reconstructed energy (bin migration), systematics

Pushing to the highest energies ($E_{reco} > 100$ TeV)

- Preliminary! Caveats: Reconstructed energy (bin migration), systematics studies ongoing.
 - Acceleration mechanisms: hadronic?
 - Correlation with neutrinos?
 - Prospects for testing Lorentz Invariance Violation.

N. Omodei | HAWC Highlights

Cosmic rays

N. Omodei | HAWC Highlights

Cosmic ray spectrum (PRD 2017)

 10^{4}

 10^{5} Energy [GeV] 10^{6}

Cosmic ray anisotropy (ApJ 2014, ApJ 2018), update and combining joint analysis with IceCube ongoing

intensity [10^{-3}]

