Fermi-GBM GRBs with characteristics similar to GRB 170817 A

von Kienlin A. et al., 2019, ApJ, 876, 89

Andreas von Kienlin

Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

First EM Signal with a GW Counterpart GW 170817 / GRB 170817A Abbott+ 2017, ApJL, 848, L13 Goldstein+ 2017, ApJL, 848, L14

Association

at 5.3 o

- Temporal association: $\Delta t = 1.74 + -0.05 s$
- Spatial association

CONFIRMED → BNS – short GRB Association

Science

- Directly measured the speed of gravity
- Probed the neutron star (NS) equation of state: constrained the maximum mass of a NS
- Investigated the emission physics of relativistic jets and the engine that produces the short GRB
- Estimated the rate of joint detections, suggesting they should be reasonably common

Question: are there similar GRB events in the GBM GRB database?

GRB 170817A: A short GRB with a low-energy tail

Goldstein+ 2017, ApJL, 848, L14

- The main hard peak is best fit with by a an exponentially cutoff power law (Comptonized model) with E_{pk} = 185 ± 62 keV
- The soft tail is best fit by a black body with $kT = 10.3 \pm 1.5 \text{ keV}$

GRB 170817A: A short GRB with a low-energy tail

Goldstein+ 2017, ApJL, 848, L14

GBM temporal analysis results

- $T_{90} = 2.0 \pm 0.5 \text{ s}$
- GRB 170817A is 3 times more like to be a <u>short GRB</u> than a long GRB, although it is <u>spectrally</u> softer than many sGRBs

GRB 170817A: Standard GBM Catalog analysis

Goldstein+ 2017, ApJL, 848, L14

- Average fluence for a short GRB compared to the catalog distribution
- Relatively weak in peak flux in the lower third in the 64ms peak flux distribution
- > It appears as a typical sGRB in the observer frame

GRB 170817A: Source Frame Energetics

Abbott+ 2017, ApJL, 848, L13

GRB 170817A was extremely under luminous compared to other GRBs

- > It was the closest (of GRBs with measured redshift) and least luminous GRB ever detected
- > Estimated isotropic-equivalent energy is ~2-3 orders of magnitude lower than previous observations

Search for GRBs with Similar Characteristics

von Kienlin, A., et al., 2020, ApJ, 893, 46

The **GBM GRB online catalog** is updated **within 1 hour**: → http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html

Selection of Candidates

- Significantly luminous initial peak, brighter over 50 300 keV than in 8 50 keV
- Weak tail, bright over the 8 50 keV energy range and disappears at higher energies
- Verification
 - Localization of the main and soft emission episodes must coincide
 - Spectral characteristics of the soft tail must be similar to that of GRB 170817A
- \rightarrow 13 Candidates
 - → Including GRB 170817A
 - \rightarrow and GRB 150101B,
 - A second Nearby Event with a Short Hard Spike and a Soft Tail (Burns+ 2018 ApJL 863, L34)

I not claiming for completeness

13 Candidates

			Durations		Localization		Total Fluence	Peak Flux			
GRB Name	Trigger ID ^a	Time	T90	T50	RA	Dec.	error	$(\mathrm{erg}\ \mathrm{cm}^{-2})$	(64 ms)	$Detect.^{d}$	References
		(UTC)	(s)	(s)	$(\deg.)$	$(\deg.)$	$(\deg.)$	$\times 10^{-7}$	$({\rm ph}~{\rm cm}^{-2}~{\rm s}^{-1})$		
GRB 081209A ^b	bn081209981	23:41:56.39	0.192 ± 0.143	0.128 ± 0.143	45.3	63.5	4.9	14.66 ± 1.49	25.4 ± 1.2	$_{\rm KW,S^e,A}$	Golenetskii (2008a,b)
GRB 100328 A^b	bn100328141	03:22:44.60	0.384 ± 0.143	0.192 ± 0.091	155.9	47.0	4.8	10.01 ± 0.24	13.4 ± 0.8		Abadie et al. (2012)
$\mathrm{GRB}\ 101224\mathrm{A}$	bn101224227	05:27:13.86	1.728 ± 1.68	0.192 ± 0.286	285.9	45.7	0.1^{f}	1.92 ± 0.27	6.7 ± 1.0	\mathbf{S}	Krimm (2010); Nugent & Bloom (2010);
											Xu (2010); Golovnya (2011)
$\rm GRB~110717A^b$	bn110717180	04:19:50.66	0.112 ± 0.072	0.032 ± 0.023	308.5	-7.9	7.5	2.51 ± 0.12	18.5 ± 1.8	KW, IA	Fermi-GBM Only
GRB $111024C^{b}$	bn111024896	21:30:02.24	0.960 ± 1.032	0.256 ± 0.143	91.2	-1.8	13.2	3.80 ± 0.16	7.4 ± 1.2	IA	Fermi-GBM Only
GRB $120302B^{b}$	bn120302722	17:19:59.08	1.600 ± 0.779	0.512 ± 0.466	24.1	9.7	13.9	1.19 ± 0.16	6.2 ± 1.5		Fermi-GBM Only
GRB 120915 A^c	bn120915000	00:00:41.64	0.576 ± 1.318	0.320 ± 0.091	209.4	67.3	5.9	5.06 ± 0.26	6.0 ± 0.9	IA, SW	Fermi-GBM Only
GRB 130502A	bn130502743	17:50:30.74	3.328 ± 2.064	2.304 ± 0.572	138.6	-0.1	0.0^{f}	6.27 ± 0.35	6.6 ± 1.4	S, OT	Troja (2013); Malesani (2013);
											de Ugarte Postigo (2013);
											Gorosabel (2013) ; Breeveld (2013)
$\rm GRB~140511A^c$	bn140511095	$02{:}17{:}11.56$	1.408 ± 0.889	0.256 ± 0.181	329.8	-30.1	8.8	3.71 ± 0.32	9.4 ± 1.0		Fermi-GBM Only
GRB 150101B	bn150101641	15:23:34.47	0.08 ± 0.928	0.016 ± 0.023	188.0	-11.0	0.0^{f}	2.38 ± 0.15	10.5 ± 1.3	S, IA, C,	Troja et al. (2018); Burns et al. (2018);
										X, z	Fong et al. (2016)
GRB 170111B ^c	bn170111815	19:34:01.39	3.072 ± 1.318	0.32 ± 0.091	270.9	63.7	6.7	5.96 ± 0.12	7.6 ± 1.0		Fermi-GBM Only
GRB 170817A	bn170817529	12:41:06.47	2.048 ± 0.466	1.28 ± 0.405	197.5	-23.4	0.0^{f}	2.79 ± 0.17	3.7 ± 0.9	L, z, C,	Abbott et al. (2017a)
										IA, HST	
										and more	
GRB 180511A ^c	bn180511364	08:43:35.79	0.128 ± 1.207	0.032 ± 0.045	250.4	-8.2	15.1	1.53 ± 0.21	9.2 ± 1.0	IA	Fermi-GBM Only

Table 9. Standard Farmi CDM hund actales parameters of the final example of 12 and idate CDDs, which is including the reference CDD 170917A

\succ Properties of the final candidates \rightarrow next slides!

Interval for HR

Soft component

տեմ

I for HR

mponent

ղիվ

հունով

Interval for HR

Soft component

-

֊ւլիկե

Main pulse

ulse

Main pulse

Candidate Properties: Spectral Hardness vs. Duration

Hardness-duration plot

From 10-year GBM GRB catalog

1st group:

- Soft tail below a hardness value of 1
- ≻ T₉₀: 1 4 s,
- 7 GRBs including GRB 170817A

And group:

- \succ T₉₀ < 0.6 s / hardness: 0.7 6 / large errors
- ➢ 6 GRBs, including GRB 150101B
- + Peak energy as proxy for hardness
- Main pulse of the short group has systematically higher peak energies compared to the longer population!

• final sample

- GRB 170817A + GRB 150101B
- GRBs (with $T_{90} < 5 s$) with redshift

Candidate Properties: Correlation Analysis

- between parameters of the main pulse and soft tail
 - Photon- and energy-fluxes, fluence and characteristic energies: kT and E_{Peak}
 - Derived from spectral analysis
- No significant correlation between the fluence and characteristic energies
- Significant correlation in Photon Fluxes

Candidate Properties: Pulse Fitting and Variability

- Inspection of lightcurves using pulse-fitting techniques
- Fit function composed of two pulses
 - Relation main pulse / tail
 - Analytical functions: \rightarrow Norris et al. (1996, 2005)
- Cases where the two episodes
 - clearly separated

overlap \triangleright

- Determination of minimum variability timescale dt_{min}
 - Method of Golkhou et al. (2015)

in bins

40

siduals (σ)

- Describes the shortest coherent \triangleright variation in the lightcurve
- Radius emission region \triangleright

-0.5

0.0

t-t0 [s]

-1.0

0.5

1.0

1.5

GRB 170817A (8-300 keV)

Background

260

Candidate Properties: Pulse Fitting and Variability

- Inspection of lightcurves using pulse-fitting techniques
- Fit function composed of two pulses
 - > Relation main pulse / tail
 - > Analytical functions: \rightarrow Norris et al. (1996, 2005)
- Cases where the two episodes
 - clearly separated

➤ overlap

- Determination of minimum variability timescale dt_{min}
 - Method of Golkhou et al. (2015)
 - Describes the shortest coherent variation in the lightcurve
 - Radius emission region

GRR name	σ.	dt .	t i ost i s	Main/Tail relation
GILD hame	$v_{t_{ m rise,main}}$	uumin	⁰ peak,soft ⁻⁰ peak,main	Mani/ Tan Telation
GRB 081209A (v)	25 ± 3	< 14.9	133 ± 14	joined
GRB 100328A (v)	77 ± 21	< 10.6	1153 ± 65	separated
GRB 101224A	23 ± 23	47.4 ± 7.6	1360 ± 625	separated
GRB 110717A (v)	36 ± 11	11.4 ± 3.0	712 ± 2097	separated
$\mathrm{GRB}\ 111024\mathrm{C}$	33 ± 17	40.7 ± 8.8	106 ± 20	separated
GRB 120302B	16 ± 19	< 119.6	1545 ± 134	separated
GRB 120915A (v)	312 ± 75	40.6 ± 13.2	632 ± 717	separated
GRB 130502A	169 ± 63	220.7 ± 34.0	2092 ± 765	separated
GRB 140511A	23 ± 7	<94.4	385 ± 424	joined
GRB $150101B$	6 ± 1	7.9 ± 0.7	52 ± 11	joined
			865 ± 71	separated
GRB 170111B	110 ± 36	<63.4	-502 \pm 104 $^{\rm a}$	separated
GRB 170817A	263 ± 103	124.6 ± 6.4	1201 ± 774	joined
GRB 180511A (v)	15 ± 4	<5.3	94 ± 65	joined

(v): candidates, where the variability timescale is less than the rise time with more than 2 sigma significance, indicating pulse sub-structure

⇒ We find that short-hard candidates with the exception of GRB 150101B have significant variation within the main pulse, i.e they are composed of multiple overlapping pulses

Discussion

- Sample of GRBs that show similarities to GRB 170817A
 - > Soft emission episode with a BB spectrum that follows the main peak
 - Soft emission separate from the main peak reported for the first time
- Two emerging groups of candidates in hardness duration diagram plot
 - ➤ Viewing angle effect? ⇒ similar GRBs viewed off-axis will become softer and of longer duration.
 - > Short timescale structures present in on-axis lightcurves will be smoothed out for an off-axis observer
- Proposed model (e.g. Lazzati et al. 2017)
 - > Main peak: successful GRB jet, with lateral angular structure that is viewed off-axis
 - > Soft emission: from the photosphere of a wide angled cocoon
 - > Could explain both, the highly-variable main emission and the soft tail
- Cocoon shock breakout model (Gottlieb et al. 2018) \rightarrow from candidate sample:
 - > Strong variability could not come from the shock breakout emission!
 - > Unclear how to account for the soft tails, temporally clearly separated from the main pulse!

Conclusion

◆ 12 GRBs similar to 170817A (including 150101B) over 10 years ⇒ ~1.3/year

- > Short GRBs ranging in duration from ~0.1 to ~3 s
- > All seem to have a similar soft (blackbody?) tail
- > Tail not part of natural hard-to-soft spectral evolution observed in many GRBs
- Could be signatures of low-z binary neutron star mergers
 Most short GRBs do not have this observed tail, far away ⇒ too weak to be observed?
- Only 170817A and 150101B have measured redshift

GRB 170111B has an intriguing soft precursor

Discussion II by Matsumoto, T., & Piran, T. 2020, MNRAS 492, 4283

"On short GRBs similar to GRB 170817A detected by Fermi-GBM"

• vK19 sample: regular GRBs? \Rightarrow 2 tests:

Location in the ε_p - $E_{\gamma,iso}$ plane / Compactness limit (minimal Γ)

- > consistent with being regular if they are located at $z \simeq 0.3 3$
- > consistent with GRBs 150101B (50%) and 170817A (50%) if they are located at ≤ 0.1
- Estimate of compatibility with the Cocoon shock breakout model
 - > no obvious candidates / but when the error of the redshift estimate is taken into account, 1 2 events may be consistent

Calculation of event rate for off-axis emission

- From jet core ⇒ rejected as it predicts too small event rate
- From jet wing (surrounding the core) ⇒ can be consistent with the observed rate but the model parameters cannot be constrained by the current observations

Conclusion

- vK19 events can be associated with a wing emission
- two of them could be a cocoon shock-breakout events
- > all can also be simple regular sGRBs
- > But: without a redshift determination it will be impossible to determine the real origin of these events