GRBs and magnetars in the multi-messenger era

MARIA GRAZIA BERNARDINI

INAF - Osservatorio Astronomico di Brera Second GraviGamma Workshop — June 23, 2021

The central engine of GRBs

Usov 1992, Duncan & Thompson 1992, Dai & Lu 1998, Zhang & Meszaros 2001, Metzger et al. 2011

Observational imprints of the magnetar

The GRB emission

The kilonova emission associated to SGRBs

Observational imprints of the magnetar

Free GRB emission:

- X-ray plateau
- Extended emission in SGRBs
- Pre- and post-cursors in the prompt emission

The kilonova emission associated to SGRBs

First evidence for magnetars: the X-ray plateau

- Plateau phase in the X-ray afterglow of LGRBs and SGRBs
- Energy injection into the afterglow lasting ~ hours
- Correlations between the plateau properties and the prompt emission (Dainotti et al. 2008, 2010, 2013, 2015)

Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009, Lyons et al. 2010, Dall'Osso et al. 2011, Metzger et al. 2011 Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu & Zhang 2014, Lu et al. 2015,

First evidence for magnetars: the X-ray plateau

$$L_{\rm sd} = 10^{49} B_{15}^2 P_{-3}^{-4} \,\mathrm{erg}\,\mathrm{s}^{-1}$$

$$t_{\rm sd} = 3 \times 10^3 B_{15}^{-2} P_{-3}^2 \,\mathrm{s}\,,$$

B~10¹⁵ G P~1 ms

Direct estimates of **B** and **P** from X-ray data

Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009, Lyons et al. 2010, Dall'Osso et al. 2011, Metzger et al. 2011 Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu & Zhang 2014, Lu et al. 2015,

Magnetar **spin-down power** provides a straightforward explanation of the features of the **plateau**

$$L_{sd}(t) = \frac{I K \omega_i^4}{(1 + 2K\omega_i^2 t)^2} = \frac{L_i}{(1 + at)^2}$$

First evidence for magnetars: the X-ray plateau

Luminosity-duration correlation implied by the model

(Bernardini et al. 2012, Rowlinson et al. 2014)

- normalization and slope from
 B and P distributions
- scatter from P:
 0.66-35 ms

Dai & Lu 1998, Zhang & Meszaros 2001, Corsi & Meszaros 2009, Lyons et al. 2010, Dall'Osso et al. 2011, Metzger et al. 2011 Bernardini et al. 2012, 2013, Rowlinson et al. 2013, 2014, Lu & Zhang 2014, Lu et al. 2015,

Extended Emission in SGRBs

~15% of SGRBs show an extended emission (EE) in the prompt phase (Lazzati et al. 2001, Norris & Bonnell 2006)

- EE + X-ray plateau: rotational powered wind (Metzger et al. 2008)
- EE: propeller mechanism (material ejected by centrifugal forces) + X-ray plateau: rotational powered wind (Gompertz et al. 2014)

The GRB prompt emission activity

How to switch on and off a GRB? Prompt emission powered by accretion onto the magnetar

Observational imprints of the magnetar

Free GRB emission:

- X-ray plateau
- Extended emission in SGRBs
- Pre- and post-cursors in the prompt emission

Free kilonova emission associated to SGRBs

The magnetar-boosted Kilonova

- The magnetar can provide an additional source of heating in the kilonova
- Magnetar boosting claimed in the kilonova associated to GRB200522A (Fong et al., 2020)
- Imprint of the magnetar in three other SGRBs and their associated kilonovae (Gao et al., 2017)

GRB130603B

Possible contribution from the magnetar in the X-ray emission also in another SGRB with kilonova, GRB130603B (Fong et al., 2014)

Can magnetars power all GRBs?

Constraints on the aftermath of BNS merger:

- Catalog of BNS mergers by combining BNS merger rate and NS mass distribution inferred from measurements of Galactic BNSs
- Predict the number of BNS systems ending as magnetars (stable or Supramassive NS) or BHs (formed promptly or after the collapse of a hypermassive NS) for different EOSs (H4, MS1, APR4)
- Compare these outcomes with the observed rate of SGRBs

for most EOSs the rate of magnetars produced after BNS mergers is sufficient to power all the SGRBs

Can magnetars power all GRBs?

- 1. Magnetars have a limited energy budget (few x 10⁵² erg)
 - → LGRBs often above limit. However:

•Accretion: further energy supplier

•True $E_v < E_{iso}$ due to collimation

•Sufficient to energise the accompanying SN (Mazzali et al., 2014)

•Several LGRBs too energetic

➡ SGRBs often below limit:

•Radio upper limits in SGRBs rule out very energetic merger ejecta, thus excluding powerful magnetars as central engine (Ricci et al., 2020)

2. Difficult for magnetars to launch ultra-relativistic jets (e.g. Ciolfi, 2020)

3.Magnetars powering GRBs $E_{\rm ei} = 10^{51} {\rm erg}, \, \varepsilon_{\rm B} = 0.1$ $E_{\rm ej} = 10^{52} {\rm erg}, \, \varepsilon_{\rm B} = 0.1$ $E_{\rm ej} = 10^{53} {\rm erg}, \, \varepsilon_{\rm B} = 0.1$ Ricci [erg/s/Hz] 10³⁰ $\beta_{\rm in} = 0.9$ 0.7 10^{30} 10^{2} are inconsistent with galactic et al. 0.5 Luminosity : L_{ν} [10^{20} 10^{21} 10^{2} 10^{2} 10^{2} magnetar population 10^{2} 10^{28} 2020 10^{27} 10^{27} (Rea et al., 2016) 100 population of $E_{\rm ej} = 10^{52} {\rm erg}, \, \varepsilon_{\rm B} = 0.01$ $E_{\rm ej} = 10^{51} {\rm erg}, \, \varepsilon_{\rm B} = 0.01$ $E_{\rm ej} = 10^{53} {\rm erg}, \, \varepsilon_{\rm B} = 0.01$ Luminosity : L_{ν} [erg/s/Hz] $\sum_{z_{0} = 0}^{0} 0 \sum_{z_{0} = 0$ "super-magnetars" 10^{3} 10° 10^{2} 10^{2} connected with GRBs 10^{2} 10^{2}

10 Time in rest frame: *t* [yr] 10^{2}

Time in rest frame: t [vr]

Time in rest frame: t [yr]

The GRB central engine in the MM era

Lesson learned from GW 170817/GRB 170817A:

- The merger remnant (~2.7 M_{\odot}) can be either a hyper massive NS or a BH
- Non-thermal emission:
 - The X-ray flux is too low for a long-lived NS (e.g. Pooley+18, Hajela+19), and no sign for long-lived central engine activity. However, if the spin-down losses are dominated by GW emission, the contribution to the X-ray luminosity from the magnetar is negligible (e.g. Dall'Osso+15, Piro+19)
 - ➡ The "kilonova afterglow" might be also spin down emission from a magnetar with an unusually low magnetic field B~10⁹ G (Hajela et al. 2021)

Thermal emission:

The blue component and the large mass of lanthanide-free ejecta with Ekin~10⁵¹ erg argue in favor of a HMNS collapsed to a BH in ~1s (Granot et al. 2017, Margalit & Metzger 2017, Shibata et al. 2017, Metzger et al. 2018, Rezzolla et al. 2018, Gill et al. 2019b, Ciolfi 2020, Murguia-Berthier et al. 2020)

No final proof of the nature of the GRB central engine, however rapid collapse to a BH is the most probable scenario

Direct detection of GWs from the magnetar

- Magnetars source of GW if they spin fast enough to excite dynamical (B=0.27) or secular instabilities (B>0.14)
- Onset of dynamical instabilities at magnetar birth, more likely thanks to spin-up induced by accretion
- Signal from secular instabilities detectable over long timescales (~ hours)

Direct detection of GWs from the magnetar

- Long-lasting post-merger signals are the best direct detection to distinguish between magnetar and BH
- Searches in the LIGO/Virgo data for short and intermediate duration signals⁵ in GW^{1.5}²
 170817/GRB 170817A not CONCLUSIVE (Abbott et al. 2017, 2019; see however Van Putten & Della Valle 2018)

Direct detection of GWs from the magnetar

- Long-lasting post-merger signals are the best direct detection to distinguish between magnetar and BH
- Searches in the LIGO/Virgo data for short and intermediate duration signals⁵ in GW^{1.5}²
 170817/GRB 170817A not CONCLUSIVE (Abbott et al. 2017, 2019; see however Van Putten & Della Valle 2018)
- Hard to get it any time soon, but good prospects with 3rd generation of detectors, as the ET

Conclusions

- Observations of GRB emission, in particular of their X-ray emission, point towards magnetars as plausible candidates as GRB central engines
- ✓ Are all GRBs powered by magnetars?
 - There are enough magnetars to power all SGRBs
 - Not likely (at least not GRB 170817A!), but still the majority are consistent with being powered by magnetars (or more in general, by a long-lived central engine)
- Indirect evidences from GRB observations. Direct proof possible from joint GW and EM detection of SGRBs:
 - clues from GW 170817/GRB 170817A: from EM observations only, still inconclusive
 - definitive answer form direct detection of GW signal from the remnant: one of the expected breakthrough, but hardly achievable with the current generation detectors
 - much better prospects with the 3rd generation detectors (ET, CE)

The "Space-based multi-band astronomical Variable Objects Monitor" (SVOM) is a Sino-French mission dedicated to GRBs and transient sources to be launched mid-2022, duration 3+2 years

The GRB "core" program

Trigger and locate GRBs, alerts and localization distributed in real-time

- Optimal pointing strategy for ground-based follow-up
 - Synergy with other space and ground based facilities
 - Larger fraction of GRBs with redshift
- Synergy among **7 instruments in space and on ground** for a multiwavelength follow-up
 - Complete coverage of the GRB emission over 7 decades in energy from the trigger up to the late afterglow phase

SVOM reaction to a MM trigger

ECLAIRs/GRMLarge fov, independent trigger or search in the fovMXT/VTSlew following the alert ToO-MM (max 1/week)
Tiling strategy if the error box is larger than 1 deg2GWACRapid automatic response
Large fov, wide field search for counterpartC-GFT/F-GFTRapid response
Need accurate localization, photometric follow-up

Typical scenario: 5 tiles/orbit - 15 orbits (~ 1 day)

GW 170817 / GRB 170817A

Simulation of the prompt emission of GRB170817A

(Simulations by S.Schanne, MG.Bernardini and F.Piron)

CLAIRS

θ

Up to **35° off axis**: ECLAIRs triggers + alert is sent to the ground + slew is requested $\frac{1}{2}$ Up to **50° off-axis**: GRM triggers + alert is sent to the ground (with rough localization)

And the associated kilonova

Simulation of the kilonova AT2017gfo as seen by VT in 300 s at peak magnitude

VT and GFTs have the capacity to detect the kilonova since T0+2h and follow it during 10 days

Everything will be ready for mid 2022 Stay tuned!!