The future of multi-messenger transient astronomy

Gran Sasso Science Institute INFN/LNGS and INAF

Radioactively powered transients

First run O1, second run O2, and half of third run O3a

O3a Event Rate

39 candidate GW events in ~26 weeks of O3a (FAR 2 per year → contamination fraction of less than 10%)

26 candidate events low-latecy reported in GCN alerts + 13 candidate events offline analysis

LVC Catalog paper, arXiv: 2010.14527

O1, O2, O3 \rightarrow 50 candidate GW events

GW190425: another BNS detection!

	Low-spin Prior $(\chi < 0.05)$	High-spin Prior $(\chi < 0.89)$
Primary mass m_1	1.60–1.87 M_{\odot}	$1.61-2.52 M_{\odot}$
Secondary mass m_2	$1.46 - 1.69 M_{\odot}$	1.12–1.68 M_{\odot}
Total mass $m_{\rm tot}$	$3.3^{+0.1}_{-0.1}M_\odot$	$3.4^{+0.3}_{-0.1}M_{\odot}$
Luminosity distance $D_{\rm L}$	$159^{+69}_{-72} \mathrm{Mpc}$	$159^{+69}_{-71} \mathrm{Mpc}$

NO firm EM counterpart!

Sky localization of 8284 deg^2

Abbott et al. 2020, ApJL, 892

GW190814

• NO EM counterpart

 → Consistent with both BBH and NSBH scenarios
→ In the NSBH, observation results can be explained by the large mass ratio

Abbott et al. 2020, ApJL, 896

Sky localization of 18.5 deg² Luminosity distance 235 Mpc

credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

Abbott et al 2020, PRL, 125 Abbott et al 2020, APJ, 900

BBH in the accretion disk of a supermassive black hole?

Caltech/R. Hurt (IPAC)

Graham et al 2020, PRL 124

ZTF detected a candidate counterpart(!?)

- EM flare close to AGN
- ~ 34 days after the GW event
- consistent with expectations for a kicked BBH merger in the accretion disk AGN
- 765 deg² localization area
- ZTF observed 48% of the 765 deg² (90% c.r.)

Next observating runs

Observing run timeline and BNS sensitivity evolution

Starting of 04 not before June 2022

Strain sensitivities as a function of frequency

Abbott et al. 2020, LRR

Observing run timeline and BNS sensitivity evolution

O4 volume = 3*O3 volume O5 volume = 15*O3 volume

Abbott et al. 2020, LRR

O4 LOCALIZATION: sky-area and volume

		BNS	NS-BH	BBH
		Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.	Area (deg ²) 90% c.r.
O3	HLV	270^{+34}_{-20}	330^{+24}_{-31}	280^{+30}_{-23}
O4	HLVK	33^{+5}_{-5}	50^{+8}_{-8}	41^{+7}_{-6}
		Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.	Comoving Volume (10^3 Mpc^3) 90% c.r.
O3	HLV	120^{+19}_{-24}	860^{+150}_{-150}	16000^{+2200}_{-2500}
O4	HLVK	52^{+10}_{-9}	430^{+100}_{-78}	7700^{+1500}_{-920}

Detection: SNR > 4 in at least two detectors and network SNR > 12

O1, O2 Astrophysical rate → Detection rate

EXPECTED NUMBER OF DETECTIONS FOR O3 and O4

detection counts per one-calendar-year observing run

Detection: SNR > 4 in at least two detectors and network SNR > 12

Observation Run	Network	Expected BNS Detections	Expected NSBH Detections	Expected BBH Detections
03	HLV	1^{+12}_{-1}	0^{+19}_{-0}	17^{+22}_{-11}
O4	HLVK	10^{+52}_{-10}	1^{+91}_{-1}	79_{-44}^{+89}

Abbott et al. 2020, LRR

The future of GW and Multimessenger astronomy

Einstein Telescope: the European 3G GW observatory concept

Cosmic Explorer: 40km L shaped detector

EXPECTED SENSITIVITY

- Factor 10 better (x1000 Volume) than 2G detectors
- Wide frequency, with special attention to low frequency (few Hz)

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

Detection horizon for black-hole binaries

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

POPULATION:
increase number of detections

COMPACT OBJECT BINARY POPULATIONS

BINARY NEUTRON-STAR MERGERS

Sampling **astrophysical populations** of binary system of compact objects along the cosmic history of the Universe

BINARY BLACK-HOLE MERGERS

 10^{5} BNS detections per year 10^{5} BBH detections per year

The ET sensitivity will make it possible:

- EARLY UNIVERSE
- POPULATION

 PRECISE GW ASTRONOMY: exceptional parameter estimation accuracy for very high SNR events

Remote Universe

The ET wide frequency band will make it possible:

• Access UNEXPLORED MASS up to 10³ Mo

The ET wide frequency band will make it possible:

• Access UNEXPLORED MASS up to 10³ Mo

• ET sky-localization capabilities

BNS simulation See M. Maggiore talk for ET science case

ET science case in Maggiore et al. 2020

Multi-messenger in the ET era

Binary systems of Compact Objects

Cosmology

- Study BNS/NSBH along the cosmic history
- Large increase of detection rate
- Better parameter estimation

ET detection capabilities

Astrophysical simulations for BNS from population synthesis code

Mpc

Σ

 10^{-1}

10⁻²

14

SFR, Madau & Fragos 2017

10

12

μ(z) 25%<P<75% *ψ*(*z*) 25%<P<75%

8

α5

6

Look back time [Gyr]

SFR

4

2

0

impact of SFR and metallicity uncertainty

Santoliquido et al. 2021, MNRAS

ET DETECTION EFFICIENCY

ALL ORIENTATION

EINSTEIN TELESCOPE DETECTION/SKY LOCALIZATION

BINARY NEUTRON-STAR LOCALIZATION

1 year of observations

Networkskykycadia atianoracapaltietses

ET+ 2G detector network (Virgo+, LIGO-H+, LIGO-L+, LIGO-India, KAGRA)

Operating with 2G detector network improves the ET sky-localization capability up to a redshift of about 0.6 (3.5 Gpc)

SEARCH PHASE: two regimes nearby Universe and remote Universe

THERMAL EMISSION - KILONOVAE

KILONOVA PHYSICS, NUCLEOSYNTHESIS, NUCLEAR PHYISCS and COSMOLOGY

PHYISCS and COSMOLOGY

ET+Vera Rubin synergy

VERA RUBIN OBSERVATORY ToO:

- three epochs of 600s observations in two filters
- detection efficiency is larger than 99% up to z=0.3

COSMOLOGY: Hubble constant measurement from GW standard sirens with sub-percent precision!

rom GW standard sirens with sub-percent precision!

CHARACTERIZATION PHASE: spectroscopy and deep observations

HOST GALAXY REDSHIFT

Spectroscopic surveys (WAVES, DESI, MSE) will measure the z for several milions of galaxies

TRANSIENT SPECTRA and DEEP FOLLOW-UP

VLT, JWST, TMT, ELT

Several tens of transients are expected to be completely characterized

Watson, D. et al. 2019 Nature

HIGH-ENERGY

RELATIVISTIC JET PHYSICS, GRB EMISSION MECHANISMS, COSMOLOGY and MODIFIED GRAVITY

COSMOLOGY and MODIFIED GRAVITY

- GRB detectable up to high z
- Small number of contaminants
- Promising wide FoV hard-soft Xray instruments
- Good sky localization to drive a prompt EM follow-up

THESEUS MISSION CONCEPT

Amati et al. 2018

Soft X-ray Imagers (SXI)

- 0.3-5 keV
- FoV ~ 0.5 sr
- Location accuracy ~ 0.5'-1'

X-Gamma-ray Imager Spectrometer (XGIS)

- 2 keV 10 MeV
- FoV ~ 2 for 2-150 keV band and > 4 sr for > 150 keV band sr
- Location accuracy ~ 5'
- InfraRed Telescope (IRT)
 - 0.7mt class telescope
 - 0.7-1.8 mm (IZYJH)
 - FoV: 15'x15'
 - Imaging (H=20.8;150 s) and high resolution spectroscopy (H=17.5;1800s) capabilities (→ redshift)
- BROAD FIELD OF VIEW (more than 1sr) with ACCURATE LOCALIZATION (down to 0.5'-1' in the X-rays)
- LARGE SPECTRAL COVERAGE from 0.3 keV up to several MeV
- an on-board prompt (few minutes) follow-up with a 0.7 m CLASS IR TELESCOPE with both imaging and spectroscopic capabilities

COMBINED DETECTION EFFICIENCY

On-axis short GRB detection rate of THESEUS di 12/yr within 1' – 5' about 25% is expected to be detected also with IRT with arcsec loc ET, ET+CE, ET+CE+CE

Considering off-axis GW/GRB detections....

ET+THESEUS synergy

Adding GRB EXTENDED EMISSION, PLATEAU (magnetar or high latitude emission) and SPIN-DOWN POWERED EMISSION.

THESEUS-ET joint detections about 100 per year Preliminary results for prompt emission joint detections by other instruments •

GECAM	Instrument	Joint/Total EM	Joint detections
	Fermi GBM	89%	40
	BAT	88%	10
	GECAM	RELIMINA	160
\$P \$P	HERMES	87%	90
	SVOM GRM	86%	20
	EP	87%	3
	TAP-GTM	86%	40

Einstein Probe

Ronchini S + GSSI group

Transient Astrophysics Probe (TAP)

Cosmology and dark energy with ET

BINARY NEUTRON-STAR MERGERS

High-redshift

Cosmology and dark energy with ET

Modified GW propagation

Nancy Roman

ATHENA

THE ASTROPHYSICS OF THE HOT AND ENERGETIC UNIVERSE

Europe's next generation X-RAY OBSERVATORY

Transient Astrophysics Probe (TAP)

exploring transients and variability in the dynamic X-ray Universe

Einstein Probe

James Webb Space Telescope

HOW DOES ORDINARY MATTER

ASSEMBLE INTO THE LARGE SCALE STRUCTURES THAT WE SEE TODAY?

How do black holes grow and shape the Universe?

