ISOSPIN BREAKING IN TAU INPUT FOR $(g-2)_{\mu}$ FROM LATTICE QCD

Mattia Bruno

in collaboration with T. Izubuchi, C. Lehner and A. Meyer for the RBC/UKQCD Collaboration

Roma Tre December $10^{\rm th}$, 2019

$$(g-2)_{\mu}$$
 recap - I

Anomalous magnetic moment

scattering of particle mass m off external photon (μ, q) $-ie \left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2})\right], g = 2(F_{1}(0) + F_{2}(0))$ $F_{1}(0) = 1 \rightarrow F_{2}(0) = a = (g - 2)/2$

A rich history

electron a_e measured in experiment [Kusch, Foley '48] confirms radiative corrections [Schwinger '48] \rightarrow success of QFT

muon a_{μ} measured in experiement [Columbia exp. '59] "muon is heavy electron" \rightarrow families of leptons

Back to the future

new physics contribution to $a: (a - a^{SM}) \propto m^2 / \Lambda_{NP}^2$ a_{τ} experimentally inaccessible, a_{μ} most promising

イロト イポト イヨト イヨト

$$(g-2)_{\mu}$$
 recap - II

 $(g-2)_{\mu}$: discrepancy between exp vs theory $(\gtrsim 3\sigma)$ theory error dominated by hadronic physics

5-loop QED	11 658 471.90(0.01)	[Aoyama et al. 2012]	
2-loop EW	15.36(0.10)	[Gnendiger et al. 2013]	
HVP LO	692.78 <mark>(2.42)</mark>	[KNT19]	
HVP NLO	-9.83(0.04)	[KNT19]	
HVP NNLO	1.24(0.01)	[KNT19]	
HLbL	9.34 <mark>(2.92)</mark>	[Colangelo et al. '17, '18, '19]	
BNL E821	11 659 208.9(6.3)	[The g-2 Collab. '06]	
$a_{\mu}^{\exp} - a_{\mu}^{SM} = 28.0 \underbrace{(2.9)}_{(2.4)} \underbrace{(6.3)}_{(6.3)} \\ \text{new exp. Fermilab, J-PARC (improve x4)} \\ \text{table shows } a_{\mu} \times 10^{10} \\ \text{HLbL shows } a_{\mu} \times 10^{10} \\ \text{HLbL = Hadr Ligh-by-Light} \\ \text{HVP = Hadr Vac Pol} \\ \text{HVP = Hadr Vac Pol} \\ \text{CERT}$			
		< 미 > < 國 > < 필 > < 필 > < 필 > _ 필	

$(g-2)_{\mu}$ recap - III

 $(g-2)_{\mu}$: discrepancy between exp vs theory $(\gtrsim 3\sigma)$

can HLbL explain discrepancy?

10.5(2.6) estimated from models [Glasgow consensus]

new exciting results from Lattice [Mainz '18, RBC/UKQCD '18] new exciting results from dispersive methods 9.34(2.92) [Colangelo et al. '17,'18]

- \rightarrow preliminary indications HLbL not responsible for discrepancy $a_{\mu}^{\rm HLbL} = (11.9 \pm 5.3) \times 10^{-10} \qquad [{\rm RBC/UKQCD\ Latt18}]$
- \rightarrow both methods solid and improvable error estimates stay tuned for White paper "g-2 theory initiative"

イロト イポト イヨト イヨト

$(g-2)_{\mu}$ recap - IV

 $(g-2)_{\mu}$: discrepancy between exp vs theory $(\gtrsim 3\sigma)$ hadronic contributions dominate the error

HLbL: models, lattice QCD, dispersive method 10% accuracy enough, on a good pathHVP LO: dispersive approach vs lattice QCD per-mille accuracy required!

Let's focus on Hadronic Vacuum Polarization

- 1. dispersive approach more precise than lattice
- 2. alternative data set for dispersive approach: au
- 3. isospin-breaking corrections: unde venis?
- 4. isospin-breaking corrections: quo vadis?

DISPERSIVE INTEGRAL

$$a_{\mu} = rac{lpha}{\pi} \int rac{ds}{s} \, K(s,m_{\mu}) \, rac{\mathrm{Im}\Pi(s)}{\pi}$$
 [Brodsky, de Rafael '68]

analyticity
$$\hat{\Pi}(s) = \Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} dx \frac{\text{Im}\Pi(x)}{x(x-s-i\varepsilon)}$$

5

unitarity Im $\sqrt{\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right)} = \sum_{X} \left| \sqrt{\sum_{x}} \right|^{2}$ $\frac{4\pi^{2}\alpha}{s} \frac{\mathrm{Im}\Pi(s)}{\pi} = \sigma_{e^{+}e^{-} \rightarrow \gamma^{\star} \rightarrow \mathrm{had}}$

At present O(30) channels: $\pi^0 \gamma, \pi^+ \pi^-, 3\pi, 4\pi, K^+ K^-, \cdots$ $K(s, m_\mu) \rightarrow \pi^+ \pi^-$ dominates due to ρ resonance $\pi\pi$ channel is ~ 70% of signal and ~ 70% of error

イロト イポト イヨト イヨト

Some problems

most precise exp. disagree on cross-sections in $\pi\pi$ channel

averaging of cross-sections before dispersive integral \rightarrow error of 3×10^{-10}

difference of a_{μ} after dispersive integral as systematic error \rightarrow 10×10^{-10}

イロト イボト イヨト イヨト

Seattle '19: agree to disagree, new dispersive error 5×10^{-10}

6/33

RADIATIVE EVENTS

We introduce spectral function $v_0(s) = \frac{s}{4\pi \alpha^2} \sigma_{\pi^+\pi^-(\gamma)}^{\text{bare}}(s)$ $v_0(s)$ used in dispersive integral for a_μ define pion form factor $v_0 = c \text{FSR} \beta_0^3 |F_{\pi}^0|^2$

イロト イヨト イヨト イヨト

Motivations for τ

V-A current

Final states I = 1 charged

 τ data can improve $a_{\mu}[\pi\pi]$ $\rightarrow 72\%$ of total Hadronic LO or $a_{\mu}^{ee} \neq a^{\tau} \rightarrow \text{NP}$ [Cirigliano et al '18]

8/33

ISOSPIN CORRECTIONS

Restriction to $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^-\pi^0\,\nu_\tau$

$$v_0(s) = \frac{s}{4\pi\alpha^2} \sigma_{\pi^+\pi^-(\gamma)}(s)$$

$$v_{-}(s) = \frac{m_{\tau}^{2}}{6|V_{ud}|^{2}} \frac{\mathcal{B}_{\pi\pi^{0}}}{\mathcal{B}_{e}} \frac{1}{N_{\pi\pi^{0}}} \frac{dN_{\pi\pi^{0}}}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{-1} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)^{-1} \frac{1}{S_{\rm EW}}$$
Isospin correction $v_{0} = R_{\rm IB}v_{-}$

$$R_{\rm IB} = \frac{\text{FSR}}{G_{\rm EM}} \frac{\beta_{0}^{3}|F_{\pi}^{0}|^{2}}{\beta_{-}^{3}|F_{\pi}^{-}|^{2}}$$
[Alemani et al. '98]

- **0.** $S_{\rm EW}$ electro-weak radiative correct. [Marciano, Sirlin '88][Braaten, Li '90]
- **1.** Final State Radiation of $\pi^+\pi^-$ system [Schwinger '89][Drees, Hikasa '90]

3. Phase Space ($eta_{0,-}$) due to $(m_{\pi^{\pm}}-m_{\pi^0})$

9/33

イロト イポト イヨト イヨト

LONG DISTANCE QED - I

At low energies relevant degrees of freedom are mesons

Chiral Perturbation Theory [Cirigliano et al. '01, '02]

Meson dominance model

[Flores-Talpa et al. '06, '07]

Corrections casted in one function $v_{-}(s) \rightarrow v_{-}(s)G_{\rm EM}(s)$

 \rightarrow IR divergences cancel

Virtual photon corrections

PION FORM FACTORS

Sources of IB breaking in phenomenological models

$$m_{
ho^0} \neq m_{
ho^{\pm}}$$
, $\Gamma_{
ho^0} \neq \Gamma_{
ho^{\pm}}$, $m_{\pi^0} \neq m_{\pi^{\pm}}$
 $ho - \omega$ mixing $\delta_{
ho\omega} \simeq O(m_{\rm u} - m_{\rm d}) + O(e^2)$

Status

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

12/33

$$\begin{aligned} a^{\text{HVP,LO}}_{\mu}[\pi\pi, ee] &= 503.51(3.5) \times 10^{-10} \text{ with } E \in [2m_{\pi}, 1.8 \text{ GeV}] \\ a^{\text{HVP,LO}}_{\mu}[\pi\pi, \tau] &= 531.3(3.3) \times 10^{-10} \\ & \Delta a_{\mu}[\pi\pi, \tau] = -12.0(2.6) & \text{[Cirigliano et al.]} \\ & \Delta a_{\mu}[\pi\pi, \tau] = -16.1(1.8) & \text{[Davier et al. '09]} \\ & (\approx -10 \text{ due to } S_{\text{EW}}, \text{ rest } R_{IB}) \\ & a_{\mu}[\tau] : \left\{ \begin{array}{c} \text{model dependence} \\ e^+e^- \text{ data more precise} \end{array} \right. = \text{abandoned} \end{aligned}$$

$$\begin{aligned} \text{Additional } \rho\gamma \text{ mixing correction} & \text{[Jegerlehner, Szafron '11]} \\ \text{ partly accounted in } m_{\rho^0} - m_{\rho^-} \text{ in [Davier et al. '09]} \\ & a_{\mu}[\pi\pi, ee] = 385.2(1.5) \text{ with } E \in [0.582 - 0.975] \text{ GeV} \\ & a_{\mu}[\pi\pi, \tau] = 386.0(2.4) \text{ after } R_{IB} \end{aligned}$$

LATTICE FIELD THEORIES

lattice spacing $a \rightarrow \text{regulate UV}$ divergences finite size $L \rightarrow \text{infrared regulator}$

Continuum theory $a \to 0$, $L \to \infty$

$$\label{eq:bound} \begin{split} \text{Euclidean metric} & \rightarrow & \text{Boltzman interpretation} \\ & \text{of path integral} \end{split}$$

イロト イポト イヨト イヨト

$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral \rightarrow Monte-Carlo methods Markov Chain of gauge field configs $U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_N$

DETAILS OF CALCULATION

Our calculation: Domain Wall Fermion ensemble $N_f = 2 + 1$ $a^{-1} \simeq 1.73 \text{ GeV} \simeq 0.11 \text{ fm}, L \approx 5.4 \text{ fm}$ $a^{-1} \simeq 1.01 \text{ GeV} \simeq 0.19 \text{ fm}, L \approx 4.6, 6.1, 9.12 \text{ fm}$ $a^{-1} \simeq 1.43 \text{ GeV} \simeq 0.14 \text{ fm}, L \approx 4.5 \text{ fm}$

Diagrammatic expansion to $O(\alpha)$ and $O(m_u - m_d)$ [RM123]

e.g.
$$\langle O \rangle_{\rm QCD+QED} = \langle O_0 \rangle_{\rm QCD} + \alpha \langle O_1 \rangle_{\rm QCD} + O(\alpha^2)$$

QED_L and QED _{∞} : remove zero-modes of photon [Hayakawa, Uno '08]
hadronic scheme at $O(\alpha)$ and $O(m_u - m_d)$: [Blum et al. '18]
 Ω^- mass $\rightarrow a$ latt.spacing
 $m_{\pi^{\pm}} - m_{\pi^0}$ and $m_{\pi^{\pm}} \rightarrow m_u$, m_d
 $m_{K^{\pm}} \rightarrow m_s$

Local vector current $\rightarrow Z_V$

	CEF	RN X
×.	÷.	996
		14 / 33

• • • • • • • • • • • • • •

a_μ on the lattice - I

$$\begin{split} a_{\mu} &= 4\alpha^2 \int dQ^2 K(Q^2) [\Pi(Q^2) - \Pi(0)] \quad (Q^2 \text{ euclidean}) & \text{[Blum '03]} \\ \Pi_{\mu\nu}(Q^2) &= \int d^4 x e^{iQ \cdot x} \langle j^{\gamma}_{\mu}(x) j^{\gamma}_{\nu}(0) \rangle \text{ on the lattice} \\ \text{ small } Q^2 \lesssim m^2_{\mu} \text{ very difficult} \end{split}$$

$$\begin{split} \text{Time-momentum representation} & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) &= \frac{1}{3} \sum_{k} \int d\vec{x} \, \left\langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \right\rangle \quad \text{, } \left[\Pi(Q^{2}) - \Pi(0) \right] = \int dt \, G^{\gamma}(t) f(t,Q^{2}) \\ a_{\mu} &= 4\alpha^{2} \int dt \, w(t) \, G^{\gamma}(t) \, , \quad w(t) \text{ muon kernel (weights)} \end{split}$$

more natural to study G^{γ} in euclidean time spectral decomposition (reconstruction)

a_{μ} on the lattice - II

$$\begin{split} G(t) &= \sum_{n} e^{-E_n t} |\langle n | \hat{j}_{\mu} | 0 \rangle|^2 \quad t \gg 0 \,, \\ G(t) \approx \sum_{n}^{N} e^{-E_n t} |\langle n | \hat{j}_{\mu} | 0 \rangle|^2 \\ \text{dedicated calculation to resolve lowest } N \text{ states} \\ & \rightarrow \text{ partially cured signal-to-noise growth} \end{split}$$

ightarrow partially cured signal-to-noise growth

[MB, Meyer, Lehner, Izubuchi PoS '19] naive full sum $\delta a_{\mu} = 38 \times 10 - 10$ truncated sum (bounding method) $\delta a_{\mu} = 16 \times 10 - 10$ 3-state reconstruction $\delta a_{\mu} = 5 \times 10 - 10$ area = a_{μ}

イロト イロト イヨト

Contribution to a_{μ}

17/33

$$\begin{array}{ll} \text{Time-momentum representation} & & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\vec{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$$

Isospin decomposition of u, d current

$$\begin{split} j_{\mu}^{\gamma} &= \frac{i}{6} \left(\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d \right) + \frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right) = j_{\mu}^{(0)} + j_{\mu}^{(1)} \\ G_{00}^{\gamma} &\leftarrow \langle j_{k}^{(0)}(x) j_{k}^{(0)}(0) \rangle = & & & & & & & & & \\ G_{01}^{\gamma} &\leftarrow \langle j_{k}^{(0)}(x) j_{k}^{(1)}(0) \rangle = & & & & & & & & & & \\ G_{11}^{\gamma} &\leftarrow \langle j_{k}^{(1)}(x) j_{k}^{(1)}(0) \rangle = & & & & & & & & & & & \\ Decompose \ a_{\mu} &= a_{\mu}^{(0,0)} + a_{\mu}^{(0,1)} + a_{\mu}^{(1,1)} & & & & & & & & \\ \hline \end{array}$$

NEUTRAL VS CHARGED

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int d\vec{x} \ \langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \rangle \end{split}$$

^{18/33}

Synergy - I

from QCD we need a 4-point function f(x, y, z, t): known kernel with details of photons and muon line 1 pair of point sources (x, y), sum over z, t exact at sink stochastic sampling over (x, y) (based on |x - y|) Successfull strategy: x10 error reduction [RBC '16]

from QCD we need a 4-point function f(x, y, z, t): $(g-2)_{\mu}$ kernel + photon propagator Similar problem \rightarrow re-use HLbL point sources!

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

UC Boulder

Oliver Witzel

CERN Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi

KEK Julien Frison

<u>University of Liverpool</u> Nicolas Garron

<u>MIT</u> David Murphy

Peking University

Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

イロト イボト イヨト イヨト

Synergy - II

イロト イポト イヨト イヨト

21/33

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)] contribution of diagram F to pure I=1 part of Δa_{μ}

76 configurations

Synergy - III

イロト イボト イヨト イヨト

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)] contribution of diagrams V,S to a_{μ}

expected QED conn. error $\leq 3 \times 10^{-10} \rightarrow$ matches target

22/33

Synergy - IV

イロト イポト イヨト イヨト

CÊRN

23/33

Presently only leading diagrams are computed V, F, S, M [Blum et al. '18] same diagrams for isospin-breaking in τ spectral functions improvement in precision beneficial to both $(g - 2)_{\mu}$ and τ preliminary numbers for SU(3) and $1/N_c$ suppressed diagrams

LAST SLIDE, THEN PLOTS!

Restriction to $2\pi \rightarrow$ neglect pure I = 0 part $a^{(0,0)}_{\mu}[\pi^0\gamma, 3\pi, \dots]$

Lattice:
$$\Delta a_{\mu}[\pi\pi,\tau] = 4\alpha^{2} \sum_{t} w_{t} \times \begin{bmatrix} G_{01}^{\gamma}(t) + G_{11}^{\gamma}(t) - G_{11}^{W}(t) \end{bmatrix}$$

Pheno: $\Delta a_{\mu}[\pi\pi,\tau] = \int_{4m_{\pi}^{2}}^{m_{\tau}^{2}} ds K(s) \begin{bmatrix} v_{0}(s) & -v_{-}(s) \end{bmatrix}$

Conversion to Euclidean time for direct comparison

$$\Delta a_{\mu}[\pi\pi,\tau] = 4\alpha^2 \sum_t w_t \times \left\{ \frac{1}{12\pi^2} \int d\omega \ \omega^2 e^{-\omega t} \left[R_{\rm IB}(\omega^2) - 1 \right] v_{-}(\omega^2) \right\}$$

Lattice fully inclusive

manipulate G(t) (e.g. Backus-Gilbert) to implement cut $E < m_{\tau}$ include additional channels in v_0/v_-

effects above $\sim 1 \text{ GeV}$ suppressed by (muon) kernel preliminary: smaller than current precision for Δa_{μ} additional investigations on the way

イロト イポト イヨト イヨト

LATTICE: PRELIMINARY RESULTS - I

 $\Delta a_{\mu} \rightarrow G_{01} + \delta G_{11}$:

Pure I = 1 only $O(\alpha)$ terms:

Systematic errors

CÊRN

26/33

イロト イボト イヨト イヨト

Finite volume errors

empirical observation: diagrams may have largish FV errors cancellation of FV effects in physical combinations similar observation in ChPT, e.g. [Bijnens, Portelli '19]

DILEMMA

I am interested in comparing integrands beyond integrals I have computed correlation functions in Euclidean time To be or not to be Euclidean

- 1. leave lattice as it is, convert experiment to Euclidean time well-posed problem, simple Laplace trafo
- 2. spectral reconstruction from lattice data [Hansen, Lupo, Tantalo '19] ill-posed problem, not needed for integrals like a_{μ}

let's do the comparison in Euclidean time

Calculation incomplete, what follows mostly qualitative!

LATTICE: PRELIMINARY RESULTS - II

Study integrand in euclidean time \rightarrow as important as integral

direct comparison Lattice vs. EFT+Pheno

direct comparison 1. validate previous estimates of $R_{\rm IB}$

2. study neutral/charged ρ and ω properties

Preliminary lattice (full) calculation: $G_{01}^{\gamma} + \delta G$

Not included: 1. \bigcirc relevant 2. sub-leading $1/N_c$, $SU(N_f)$ 3. finite-volume errors 4. discretization errors

イロト イボト イヨト イヨト

MODEL CALCULATIONS

Preliminary (using $G_{\rm EM}^{\pi}$ and without $S_{\rm EW}$)

Data from private comm. with F. Jegelehner

[1] = [Jegelehner, Szafron '11]

depends on ρ^0 and ρ^- masses/widths

requires $G^{\pi}_{\rm EM}$ to compare with lattice

resembles lattice results qualitative agreement

EXPERIMENTAL RESULTS

$$\Delta a_{\mu}(t) = 4\alpha^2 \sum_{t} w_t \left\{ \int ds \, h(s,t) \left[v_0(s) - \frac{v_1(s)}{G_{\text{EM}}(s)} \right] \right\}$$

 v_0 BaBar, v_1 Aleph

lattice suggests a different answer

preliminary GEM^{π}

 $v_1
ightarrow kv_1$ k = 1 Standard Model k
eq 1 BSM (SMEFT) [Cirigliano et al. '18]

TOWARDS A COMPARISON

Lattice contains $\pi^0\pi^-\gamma$ states \rightarrow

Re-evaluation of $G_{\rm EM}
ightarrow G_{\rm EM}^\pi$ [in collab. with Cirigliano]

Real photon corrections

Outlook

- use arbitrary kernels with desired properties [with M. Gonzales-Alonso] even stronger suppression of neglected channels at high energies suppression of short distances (cutoff effects) suppression of long distances (noise)
- map other spectral functions to the corresponding correlators e.g. K^{\star} channel in vector-vector correlator

Eventually proper calculation is isospin-breaking corrections of $\pi\pi$ form factors

CONCLUSIONS

These are exciting times for $(g-2)_{\mu}$:

1% goal for lattice results to be expected soon QED+SIB crucial to reach target uncertainty

- As a bi-product we get $\Delta a_{\mu}[\tau]$:
 - **1.** first lattice calculation of $\Delta a_{\mu}[\tau]$ almost complete
 - 2. tests/checks previous calculations comparing v_- with experiment requires $G^{\pi}_{\rm EM}$ study G^{γ}_{01} alone $\rightarrow \rho \omega$ mixing; $\delta G^{(1,1)}$ alone $\rightarrow \rho^0$ vs ρ^-
 - 3. possibly sensitive to new physics

Thanks for your attention

$ho\gamma$ mixing - I

イロト イポト イヨト イヨト

Gounaris-Sakurai based on VMD model w/o EM gauge invariance - generation of a photon mass + based on phase shift (proper pion rescattering behavior) widely used: e.g. PDG estimates of m_{ρ} , Γ_{ρ}

 VMD model with gauge-invariance
 [Kroll, Lee, Zumino '67]

 at 1-loop s-dependent mass matrix
 [Jegerlehner, Szafron '11]

limits of validity pion-loop? high enough energy must break down

$ho\gamma$ mixing - II

RADIATIVE CORRECTIONS

Some QED corrections computed in Chiral PT [Cirigliano et al. '01]

e.g. photon exchange between τ and hadrons

relevant to compare lattice data vs v_-

is current precision enough?

alternative calculation from lattice possible [Giusti et al. '17]

