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(9 —2), RECAP - 1

Anomalous magnetic moment

scattering of particle mass m off external photon (1, q)
—ie [y F1(q?) + 5 Fa(q?)] g = 2(F1(0) + F(0))

Fi(0)=1—>F0)=a=(g—2)/2

A rich history
electron a. measured in experiment [Kusch, Foley '48]
confirms radiative corrections [Schwinger '48] — success of QFT

muon a, measured in experiement [Columbia exp. '59]

“muon is heavy electron” — families of leptons

Back to the future

new physics contribution to a: (a — a®™) o« m?/A%p cﬁw
a, experimentally inaccessible, a, most promising \
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(9 —2), RECAP - II

(9 —2)u: discrepancy between exp vs theory (2 30)
theory error dominated by hadronic physics

5-loop QED | 11658471.90(0.01) [Aoyama et al. 2012]
2-loop EW 15.36(0.10) [Gnendiger et al. 2013]
HVP LO 692.78(2.42) [KNT19]
HVP NLO -9.83(0.04) [KNT19]
HVP NNLO 1.24(0.01) [KNT19]
HLbL 9.34(2.92) [Colangelo et al. '17, '18, '19]
BNL E821 | 11659208.9(6.3) [The g-2 Collab. '06]

table shows a, x 10'°
HLbL = Hadr Ligh-by-Light

HLbL HVP X
= HVP = Hadr Vac Pol

aS® — aSM —280(2 (2 )(6)

new exp. Fermilab, J-PARC (improve x4) Cﬁw

\
NS/
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(9 —2), RECAP - III

(g — 2),: discrepancy between exp vs theory (2 30)

can HLbL explain discrepancy?

10.5(2.6) estimated from models [Glasgow consensus]

new exciting results from Lattice [Mainz '18, RBC/UKQCD '18]
new exciting results from dispersive methods
9.34(2.92) [Colangelo et al. '17,'18]
— preliminary indications HLbL not responsible for discrepancy
ap™Pl = (11.9 £ 5.3) x 10710 [RBC/UKQCD Latt18]
— both methods solid and improvable error estimates
stay tuned for White paper “g-2 theory initiative” C\ﬁw

NS/
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(9 —2), RECAP - IV

(g — 2),: discrepancy between exp vs theory (2 30)
hadronic contributions dominate the error

HLbL: models, lattice QCD, dispersive method
10% accuracy enough, on a good path

HVP LO: dispersive approach vs lattice QCD
per-mille accuracy required!
Let’s focus on Hadronic Vacuum Polarization
1. dispersive approach more precise than lattice
2. alternative data set for dispersive approach: 7
3. isospin-breaking corrections: unde venis?
4.

isospin-breaking corrections: quo vadis?



DISPERSIVE INTEGRAL

d ImII
a, =2 % K(s,m,) L(S) [Brodsky, de Rafael '68]
S ! 7r

analyticity f[(s) =TI(s) — TI(0) = s AOOQ dxlm

unitarity

: 2 4720 TmlI(s)
=y . = Oete— *—h
Iw@w | A= x PR et ey —rhad

At present O(30) channels: 7%y, 77, 3m, 4m, KT K—,---
K(s,m,) — mn~ dominates due to p resonance
7 channel is ~ 70% of signal and ~ 70% of error Cﬁw
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[Davier '18]

. NU-CLEOc

e KLOE-KT
. BESIII
. BABAR
e SND
e cMD-2
L 1
370 380

0 360

a,7%(0.6-0.9 GeV) (10™°)

390

SOME PROBLEMS

KLOE vs Babar

most precise exp. disagree on
cross-sections in 7w channel

averaging of cross-sections before
dispersive integral — error of
3x 10710

difference of a,, after dispersive
integral as systematic error —
10 x 10710

cﬁw
\

Seattle '19: agree to disagree, new dispersive error 5 X 10~10 7
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RADIATIVE EVENTS

per-mille accuracy goal: Y
Ontn—(~): contains wm and 77y —
— remove Initial state radiation (ISR)

— undress photon (remove VP)
+ leave final photon (FSR)

bare
mtr=(y)

(C invariance, ISR FSR factorize)

e \ experiments do (most of) it for us
. . S b
We introduce spectral function vy(s) = o N )
vo(s) used in dispersive integral for a,,
define pion form factor vy = cFSR 33| F2|? C\ﬁw
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vy(s)

MOTIVATIONS FOR T

3 :_ ® ALEPH
[ — Perturbative QCD (massless)
25 :— - Parton model prediction
E =
2 31 3P 61(MC)
E W(MC),nmre(MC),KK’(MC)
15 E TKR(MC)
1 F +
3 -
T A e V — A current
o bl T Final states I = 1 charged
0 0.5 1 15 2 25 3 35
s (GeV?)
7 data can improve a,[77]
- — 72% of total Hadronic LO
aatrd or a;f # a” — NP [Cirigliano et al '18]

EM current

Final states I = 0, 1 neutral

\

cﬁﬂl

NV
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IsosPIN CORRECTIONS

0

Restriction to ete™ = ntn~ and 7~ = 7 7%v,

s
vo(s) = m%ﬂr(y) (s)

o_(s) m2 Bpo 1 dN,rw()(l_%)*l(l 25)*1 1

- 6|Vud|2 Be Nmro ds m772_ SEW
FSR B3|F2J?
Grwm B3| Fr |2

Isospin correction vg = Ripv_ R = [Alemani et al. '98]

0. Sgw electro-weak radiative correct.  [Marciano, Sirlin '88][Braaten, Li '90]
1. Final State Radiation of 777~ system  [Schwinger '89][Drees, Hikasa '90]

2. Ggwm (long distance) radiative corrections in 7 decays
Chiral Resonance Theory [Cirigliano et al. '01, '02]

Meson Dominance [Flores-Talpa et al. '06, '07] Cﬁw
3. Phase Space (8y,—) due to (m,+ —mgo) 7
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LONG DISTANCE QED - 1

At low energies relevant degrees of freedom are mesons
Chiral Perturbation Theory [Cirigliano et al. '01, '02]
Meson dominance model [Flores-Talpa et al. '06, '07]

Corrections casted in one function v_(s) = v_(s)Ggrm(s)

Real photon corrections

Real + virtual

— IR divergences cancel
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PION FORM FACTORS

[Gounaris, Sakurai '68]
[Kihn, Santamaria '90]

Sources of IB breaking in phenomenological models

m,0 7& mpy+ Fpo 7é Fpi , M0 7£ Mt C\@
p — w mixing 6, =~ O(my —mq) + O(e?) 7%
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STATUS

af VPO, ee] = 503.51(3.5) x 10710 with E € [2m,1.8 GeV]

ap VP O[rm, ] = 531.3(3.3) x 1
ACLH [71'7'(', T] = —12.0(2 6) [Cirigliano et al.]
Aay, [, 7] = —16.1(1.8) [Davier et al. '09]

(z —10 due to Sgw, rest Rrp)

model dependence
ay[t] : { + P . = abandoned
e~ data more precise
Additional py mixing correction [Jegerlehner, Szafron '11]

partly accounted in m,0 —m,- in [Davier et al. '09]
a, [, ee] = 385.2(1.5) with E € [0.582 — 0.975] GeV

ay[mm, 7] = 386.0(2.4) after Rrp C\w
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LATTICE FIELD THEORIES

lattice spacing a — regulate UV divergences -
finite size L — infrared regulator
Continuum theory a — 0, L — oo L

Euclidean metric — Boltzman interpretation
of path integral Ja

(0) = 21 /[DU]e‘S[U]O(U) ~ L3 owy

Very high dimensional integral — Monte-Carlo methods
Markov Chain of gauge field configs Uy - Uy — --- — Un



DETAILS OF CALCULATION

Our calculation: Domain Wall Fermion ensemble Ny =2 + 1
a ' ~173 GeV ~0.11 fm, L ~ 5.4 fm
a~ ! ~1.01 GeV ~0.19 fm, L ~ 4.6,6.1,9.12 fm
a ' ~143 GeV ~0.14 fm, L ~ 4.5 fm

Diagrammatic expansion to O(«) and O(m, — mg) [RM123]
e.g. (O)qepqep = (Oo)qep + a(O1)qep + O(a?)
QED; and QED__: remove zero-modes of photon [Hayakawa, Uno '08]

hadronic scheme at O(«) and O(m, — my): [Blum et al. '18]
)™ mass — a latt.spacing
Myt — Myo and myx — my, ,my
Mg+ — Mg

Local vector current — Zy C@
\
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a, ON THE LATTICE - I

a, = 4a® / dQ*K(QH[M(Q?*) —11(0)]  (Q? euclidean) [Blum 03]

I,,(Q%) = fd4:ceiQ"’”(j;{(x)jZ(O)> on the lattice

small Q* < m?. very difficult

Time-momentum representation [Bernecker, Meyer, '11]

=13 / 4z (7 (2)510)) . [I(Q%) — TI(0)] = [ dt & ()78, Q%)
k

a, =4a® /dt w(t) G7(t), w(t) muon kernel (weights)

more natural to study G” in euclidean time
spectral decomposition (reconstruction) Clﬁw
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w(t)C(t)

a, ON THE LATTICE - II

N
G(t) =Y e P nljul0))* > 0,G(t) =Y e |(nljul0)]”

n
dedicated calculation to resolve lowest N states
— partially cured signal-to-noise growth

40

fe It - foi bl

local vector current

1-state reconstruction
2-state reconstruction
3-state reconstruction
4-state reconstruction

[MB, Meyer, Lehner, Izubuchi PoS "19]

naive full sum
da, = 38 x 10—-10

truncated sum (bounding method)
§a, =16 x 10—10

3-state reconstruction
Sa, = 5x10—-10

_ CE/RW
area = a, L
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CONTRIBUTION TO a,,

Time-momentum representation [Bernecker, Meyer, '11]
=3 / dF (R (2)j3(0)) = a,=4aY w,G(t)
k ¢

Isospin decomposition of u, d current

3 = $(wyuu+ dyud) + & (uy,u — dvy,d) = O+t

Gl @iy = { 3+ £ ) (e @ ey
Gl < G @i () = Gopv
&l U@y = )+ Gy

Decompose a,, = a,(f) 0 + a(o D + aE} 2 C\ﬁw
NV
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NEUTRAL VS CHARGED

i - I=1 (1,=) i =1
2(“%““1%65)’[]3:0} - Jn —\/ﬁ(umd)’[_rg:_ ]

Isospin 1 charged correlator G} = 3 Z/diﬂ (1 +) I _>(O)>

sGY =@7, -Gl [MB et al’ PoS 18]

RS O

-5 o] ) 2P + e
Q2 oF
+22 22— 4 (m, —my)|2x @
2 | | cﬁw

. = subleading diagrams currently not included 7
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SYNERGY - |

from QCD we need a 4-point function f(z,y, z,t):
known kernel with details of photons and muon line

1 pair of point sources (z,y), sum over z,t exact at sink
stochastic sampling over (z,y) (based on |z — y]|)

Successfull strategy: x10 error reduction [RBC '16]

from QCD we need a 4-point function f(z,y, z,t):
(9 —2), kernel + photon propagator

Similar problem — re-use HLbL point sources!
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SYNERGY - II

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)]

contribution of diagram F' to pure I =1 part of Aaq,

Adl/=V[F only]

2
¢  data set from HLbL .
14 % data from [Blum et al. 18] 0O(1000) point-src per conf.
. 5105 combinations
TR 80 configurations
] ****EF
}F}F |||| x4 reduction in error
= il [
3l finite volume errs relevant
— dedicated study
4 T
0 10 20 30 40
T/a = summation window
data from [Blum et al. '18]: O(500) point-src per conf. C\ﬁw
76 configurations ~7
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SYNERGY - III

Stat. improvements from data of HLbL project

contribution of diagrams V, S to a,

| l
o e
in T
S \\\\m 12 14 16
5 A\\\\\'
g A
%'dloQ..-QQGCOO"**
data from [Blum et al.’18]
. {  data set from HLbL
_54

0.0 2.5 5.0 7.5 10.0 12.5 15.0
T'/a = summation window

[Phys.Rev.Lett. 118 (2017)]

0(2000) point-src per conf.
~ 3000 combinations
0(10) configurations

x4 reduction in error

CERN
expected QED conn. error < 3 x 1070 — matches target \w
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SYNERGY - IV

SO
© O 0 e 00

[Blum et. al. '18]

o O
() F () D3 (a) M (b) R ©0

Presently only leading diagrams are computed V', F', .S, M [Blum et al. '18]
same diagrams for isospin-breaking in 7 spectral functions
improvement in precision beneficial to both (¢ —2), and 7
preliminary numbers for SU(3) and 1/N. suppressed diagrams

cﬁw
\

NS
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LAST SLIDE, THEN PLOTS!

Restriction to 2m — neglect pure I = 0 part a,(f’o) [70,3m,...]

Lattice: Aa,[rm, 7] = 4a? Zwt x [Go(t) + G, (t) — G ()]
?

Pheno: ACLM[T(T(,T]:/ TdsK(s) [ vo(8) —v_(s)]

4m?2
Conversion to Euclidean time for direct comparison

Aay[nm, 7] =402y, wy ¥ {# [ dw w?e=“t[Rip(w?) — 1] (wz)}

Lattice fully inclusive
manipulate G(¢) (e.g. Backus-Gilbert) to implement cut E < m,
include additional channels in vo/v_
effects above ~ 1 GeV suppressed by (muon) kernel

preliminary: smaller than current precision for Aa, Cﬁw
additional investigations on the way \
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LATTICE: PRELIMINARY RESULTS - |

Aa, — Go1 + 6G11: Pure I =1 only O(«) terms:

3
77 QED, conn
QED, discon 94
SIB, conn — @
S 1
. X
Ve =
< 0
4
T -2 T T T
0 1 2 3 4 5 0 1 2 3 4 5
t [fm] t [fm]
vy F= (O 5=
M = @ 0= @ Q relevant, negative, neglected C\w



SYSTEMATIC ERRORS

* 243
1.5 4 + 323

i: x,»#ﬂgﬁﬁﬁﬁ

0.0 e3¢

(1071

aSED,conn =V +28

QED, conn
i

FV study at coarse
al~1GeV

a

0 5 10 15 20
. T'/a = summation window
Finite volume errors

empirical observation: diagrams may have largish FV errors

cancellation of FV effects in physical combinations Cw
similar observation in ChPT, e.g. [Bijnens, Portelli '19] \
NV
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DILEMMA

| am interested in comparing integrands beyond integrals
| have computed correlation functions in Euclidean time

To be or not to be Euclidean

1. leave lattice as it is, convert experiment to Euclidean time
well-posed problem, simple Laplace trafo

2. spectral reconstruction from lattice data [Hansen, Lupo, Tantalo '19]
ill-posed problem, not needed for integrals like a,,

Calculation incomplete, what follows mostly qualitative! /N
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Aay,(t) [x1071)

LATTICE: PRELIMINARY RESULTS - II

Study integrand in euclidean time — as important as integral

direct comparison

1. validate previous estimates of Rip
Lattice vs. EFT+Pheno

2. study neutral/charged p and w properties

Preliminary lattice (full) calculation: GJ; + 6G

Prelim. lattice

Not included:

1. @ Q relevant

2. sub-leading 1/N,, SU(Ny)

3. finite-volume errors

4. discretization errors
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MODEL CALCULATIONS

Preliminary (using Gfy; and without Sgw)

1.0 — Rl [1] = [Jegelehner, Szafron '11]

depends on p° and p~
masses/widths

0.0 requires G, to compare
\/ with lattice

resembles lattice results

0 ! 2 f[‘;?] 4 5 6 qualitative agreement
L [Tm

Data from private comm. with F. Jegelehner
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Aay(t) [x1071]

Aa, (1) = 10?3 wy / ds h(s,1) [vo(s)

vg BaBar, vy Aleph

preliminary GEM™

v, — kv

k =1 Standard Model
k # 1 BSM (SMEFT)
[Cirigliano et al. '18]

o Gy ok #1

®

o

'S

o

=

EXPERIMENTAL RESULTS

B v1(8)
GgMm(s)

I}

lattice suggests a different answer

2.5
0.0 1
2 95
S
X
— =50
3
q 75
~10.0 o Giy
Gem
—12.5 T T T T T
0 1 2 3 4 5 6
t [fm]
CERN
\\
N
] =) E E DA



TOWARDS A COMPARISON

Lattice contains 707~ states — @

Re-evaluation of Ggym — Gy [in collab. with Cirigliano]

Real photon corrections

GEy w/o m0m =y FSR




OUTLOOK

use arbitrary kernels with desired properties [with M. Gonzales-Alonso]
even stronger suppression of neglected channels at high energies
suppression of short distances (cutoff effects)

suppression of long distances (noise)

map other spectral functions to the corresponding correlators

e.g. K* channel in vector-vector correlator

Eventually proper calculation is isospin-breaking corrections of w7 form factors
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CONCLUSIONS

These are exciting times for (g — 2),,:
1% goal for lattice results to be expected soon
QED-+SIB crucial to reach target uncertainty
As a bi-product we get Aa,[7]:
1. first lattice calculation of Aa,[7] almost complete
2. tests/checks previous calculations
comparing v_ with experiment requires G,

study G, alone — pw mixing; §G(11) alone — p® vs p~

3. possibly sensitive to new physics

Thanks for your attention cﬁw
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Py MIXING - I

Gounaris-Sakurai based on VMD model w/o EM gauge invariance
- generation of a photon mass
+ based on phase shift (proper pion rescattering behavior)
widely used: e.g. PDG estimates of m,, I,

VMD model with gauge-invariance [Kroll, Lee, Zumino '67]
at 1-loop s-dependent mass matrix [Jegerlehner, Szafron '11]

//\\ //\\ //\\
[AVAVAV| AVAVAVERR——1 — NN\ —
N 4 N 4 N 4

limits of validity pion-loop? high enough energy must break down

CE/RW
\

NS/



Py MIXING - II

Phase (degrees)

160
140
120
100
80
40
40
20

1.004
[Jegerlehner, Szafron '11] 0.904
O
=
= 0.80
—— p-7 included / p no mixing
0.704 -~ GS fit =1 / p no mixing

—— phase F, our model

0.0 200.0  400.0  600.0  800.0  1000.0
E (MeV)

30% correction at 1 GeV
81 in good agreement E < 800 MeV
perhaps restrict the py below

800 MeV?
cﬁw
\



RADIATIVE CORRECTIONS

Some QED corrections computed in Chiral PT [Cirigliano et al. '01]

e.g. photon exchange between 7 and hadrons

relevant to compare lattice data vs v_
is current precision enough?

alternative calculation from lattice
possible [Giusti et al. "17]




