

Contribution ID: 33

Type: Short oral in replacement of poster

Short_Oral_33: Verification of Ni ion dielectronic satellite structure in JET plasma diagnostic for low and high plasma rotation

Wednesday, 8 September 2021 17:10 (10 minutes)

Measurement of the x-ray spectra of the He-like Ni ions (Ni²⁶⁺) and their dielectronic satellites (Ni²⁵⁺, Ni²⁴⁺, and Ni²³⁺) plays a crucial role in determination of electronic and ionic temperature of plasma in the JET device. Because $n \geq 3$ satellites of Ni²⁵⁺ overlap with resonance 'w' line of Ni²⁶⁺, it is important to reconstruct the structure of these satellites reliably. It is especially important in the cases when plasma rotation is high what results in additional shift of $n \geq 3$ satellites of Ni²⁵⁺ in respect to resonance 'w' line.

Collisional-Radiative Modelling (CRM) by using the FAC code has been used for modeling the spectral emission from Ni $^{26+}$ + dielectronic satellite ions from plasmas for various electronic temperatures. Multi-Configurational Dirac-Hartree-Fock + Configuration Interaction (MCDHF-CI) calculations by using the GRASP code has been used to examining electron correlation effect on wavelengths and transition rates for $L \to K$ transitions occurs in He- and Li-like Ni ions. Basing on ab initio calculations we were searching for optimal approach to fit the $n \geq 3$ satellites of Ni $^{25+}$ in experimental JET spectra.

Primary authors: KOZIOŁ, Karol (National Centre for Nuclear Research); RZADKIEWICZ, Jacek (National Centre for Nuclear Research); PATEL, Ashwin (Culham Centre for Fusion Energy)

Presenters: KOZIOŁ, Karol (National Centre for Nuclear Research); RZADKIEWICZ, Jacek (National Centre for Nuclear Research)