

The Belle II experiment at SuperKEKB: status and prospects

B. Oberhof LNF-INFN, Italy

14th November 2019

Outline

- The B-factories and their legacy
- The Intensity Frontier
- The SuperKEKB collider
- The Belle II detector
- Physics program
- Results from early data
- Schedule & prospects

Introduction

B-factories: history

- Belle II follows the path defined by the BaBar (SLAC, USA) and Belle (KEK, Japan) experiments which started taking data 20 years ago
- The primary aim of the two experiments was the measurement of CP-violation in the B⁰B⁰ meson system and test of the CKM paradigm, however physics results were not limited to that

B-factories: key ingredients

- Collider performance:
 - high luminosity (steadily improved)
 - long term steady operations & machine background control
- Environment of e⁺e⁻ colliders:
 - very clean production process
 - no additional interactions → low backgrounds, high trigger efficiency
- Detector performance:
 - Precise, efficient, fast, almost hermetic
 - Multi purpose: tracking, vertexing, particle ID, neutral reconstruction etc.

B-factories: heritage

- Many important results over the years in the beauty, charm and τ sectors → O(1000) papers published (jointly)
- Confirmation of the CKM paradigm and precise determination of the unitarity triangle
- No evidence for physics beyond the SM

B. Oberhof - 14/11/2019

New-generation B-factory

- Given the success of BaBar and Belle, why should one build a new B-factory?
- Nowadays there is strong evidence that physics beyond the SM exists:
 - Temperature fluctuations of cosmic background radiation and rotation curves from spiral galaxies indicate existence of Dark Matter

 CP-violation predicted by the CKM matrix is several orders of magnitudes too small to account for the observed matter anti-matter asymmetry in the universe

The Intensity Frontier

- Belle II is a leading experiment in the "Intensity Frontier"
- In three fold approach of near-mid term particle physics, Flavor Physics explores its goals with highest reachable intensity
- Belle II will be sensitive to New Physics up to the TeV scale through penguin diagrams

- Indirect search for NP \rightarrow new particles in loops affect SM predictions
- Widely endorsed approach, e.g. EPPSU 2018-2020
- Belle II complements with LHCb, similar goals, but different environment

Intensity Frontier Requirements

- In order to meet the physics goals the data sample should exceed 50 ab⁻¹
- This requires an increase of a factor of 40 in instantaneous luminosity → new collider, SuperKEKB
- Higher luminosity = possibly much higher beam backgrounds. To keep required

The facility

Bellell & SuperKEKB @ KEK

• KEK stays for	for 高 エネルギー		加速器	研究	機構	
	Kō	Enerugī	Kasokuki	Kenkyū	Kikō	

which translates as: High

Energy

Accelerator Research Organization

- KEK is the largest HEP laboratory in Japan, located in Tsukuba, ~50 Km north-east of Tokyo
- Besides SuperKEKB it hosts two photon factories (PF and AR-PF)

B. Oberhof - 14/11/2019

The challenge: 8x10³⁵ cm⁻² s⁻¹

• How to gain a factor 40 in (instantaneous) luminosity w.r.t. KEKB?

• "Nano beams" scheme: proposed by P. Raimondi for SuperB: lower

emittance and β^* , higher crossing angle, large Piwinsky angle \rightarrow x20 gain

• Beam currents: \rightarrow x2 gain by increasing beam currents

SuperKEKB

KEKB vs SuperKEKB

		KEKB		SuperKEKB		
		LER (e^+)	HER (e^-)	LER (e^+)	HER (e^-)	Units
Beam energy	E	3.5	8.0	4.0	7.007	GeV
Circumference	С	3016	5.262	3016	5.315	m
Half crossing angle	θ_x	0(1)	0(11 ^(*))		41.5	
Piwinski angle	ϕ_{piw}	0	0	24.6	19.3	rad
Horizontal emittance	\mathcal{E}_{χ}	18	24	3.2(1.9)	4.6(4.4)	nm
Vertical emittance	\mathcal{E}_{v}	150	150	8.64	12.9	pm
Coupling		0.83	0.62	0.27	0.28	%
Beta function at IP	β_x^*/β_v^*	1200/5.9	1200/5.9	32/0.27	25/0.30	mm
Horizontal beam size	σ_x^*	147	170	10.1	10.7	μm
Vertical beam size	σ_v^*	940	940	48	62	nm
Horizontal betatron tune	V_X	45.506	44.511	44.530	45.530	
Vertical betatron tune	v_y	43.561	41.585	46.570	43.570	
Momentum compaction	α_p	3.3	3.4	3.20	4.55	10^{-4}
Energy spread	σ_{ϵ}	7.3	6.7	7.92(7.53)	6.37(6.30)	10^{-4}
Beam current	Ι	1.64	1.19	3.60	2.60	A
Number of bunches	n _b	15	84	25	00	
Particle/bunch	Ν	6.47	4.72	9.04	6.53	10 ¹⁰
Energy loss	U_0	1.64	3.48	1.76	2.43	MeV
Long. damping time	$ au_z$	21.5	23.2	22.8	29.0	msec
RF frequency	f _{RF}	50	8.9	50	8.9	MHz
Total cavity voltage	V_c	8.0	13.0	9.4	15.0	MV
Total beam power	P_b	~ 3	~ 4	8.3	7.5	MW
Synchrotron tune	v_s	-0.0246	-0.0209	-0.0245	-0.0280	
Bunch length	σ _z	~ 7	~ 7	6.0(4.7)	5.0(4.9)	mm
beam-beam parameters	ξ_x/ξ_y	0.127/0.129	0.102/0.090	0.0028/0.088	0.0012/0.081	
Luminosity	L	2.108	$\times 10^{34}$	8 ×	10 ³⁵	$cm^{-2}s^{-1}$
Integrated luminosity	$\int L$	1.0	041	5	0	ab^{-1}

× 2-3 beam currents

similar beam-beam strength (tune-shift)

 \rightarrow × 40 peak luminosity

SuperKEKB Schedule

BEAST = Beam Exorcism for A Stable experiment

B. Oberhof - 14/11/2019

SuperKEKB works!

- First physics run with full Belle2 detector: Phase3, March to June 2019
- Background decreased by factor 10 from Phase2 with improved collimation
- About one month lost because of fire accident in LINAC (April 2019)
- Stable operation
 with I = 500 mA
- Squeezed β*
 down to 2 mm
- About 6.5 fb⁻¹ of data recorded
- Peak luminosity
 - 1x10³⁴ cm⁻² s⁻²

1/2 of KEKB peak lumi

B. Oberhof - 14/11/2019

The detector

The Belle II Detector

B. Oberhof - 14/11/2019

Belle → Belle II

- Belle II is an upgrade of the Belle detector designed to improve performance, especially with new machine conditions, in particular:
 - Higher background environment of SuperKEKB w.r.t. KEKB
 - Reduced CM boost w.r.t. Belle
- Highlights:
 - Vertex detector:
 - 2 layers of pixels
 - 4 layers of DSSD with extended coverage
 - Particle-ID:
 - new TOP + ARICH (FWD)
 - Drift chamber:
 - smaller cell size, longer lever arm
 - K_L & muons:
 - Inner (barrel) and FWD RPCs replaced with scintillators

Belle2 works!

B-factories are back in the game

Tracking

- Because of a damage to the pixel ladders during assembly procedure only the innermost layer of the PXD is completely installed
- VXD resolution in impact parameter ~14 μ m: 2 times better than Belle

Neutrals

- The electromagnetic calorimeter is performing very well
- Belle2 benefits from a unique single photon trigger for dark sector searches

B. Oberhof - 14/11/2019

Neutral Particle ID

• A unique feature of Belle II is the Pulse Shape Discrimination to distinguish

photons and neutral hadrons in the electromagnetic calorimeter (ECL)

Basic idea: the shape of a CsI(TI) scintillation pulse depends on the dE/dx

Belle II currently uses MVA discriminators which look at the whole cluster

Charged Particle ID

- Particle ID is crucial for most analyses ١
- Contributions from various sub-detectors, ۲ in particular: CDC, TOP, ARICH
- Measured on a control samples, e.g. (for K)

$$D^{*+} \to D^0 \pi_s^+; D^0 \to \overline{K} \pi^+$$

Belle II 2019

 $Ldt = 2.62 \text{ fb}^{-1}$

3.5

4

(TOP only)

Preliminary

Good performance, detector study ongoing ۲

K ID from TOP only

K efficiency (data)

K efficiency (MC)

π mis-ID rate (data)

π mis-ID rate (MC)

1.5

2.5

K Efficiency/π mis-ID rate

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

0

0.5

CDC-dE/dx distribution and predictions

Physics Program

Physics Overview

• Belle II has a rich physics program in beauty, charm, τ and dark sectors:

B. Oberhof - 14/11/2019

Unitarity Triangle from B Decays

- Quark interactions described by the CKM unitary matrix V_{CKM}
- Off-diagonal elements of V[†]V=I can be represented by triangles in complex plane
 - Sides ~ Amplitudes ~ Branching fractions
 - Angles ~ Phases ~ CPV
- Most common triangle from $\Sigma_i V_{id} V_{ib}^*$, i=u,c,t (be aware that $\phi_1 = \beta$, $\phi_2 = \alpha$, $\phi_3 = \gamma$!)
- All angles can be accessed at B-factories

$\phi_{_1}$ and $\phi_{_2}$ at B-factories

- $B\overline{B}$ mixing and decay amplitudes interfere \rightarrow time-dependent CP asymmetry
- The BB are produced in an entangled state, the flavor of the first decaying B (tag) defines the flavor of the other B (signal) at that time
- Need to measure Δt between tag B and signal B, hence a difference in Δz
- Y(4S) \rightarrow BB pairs at rest in the CM frame \rightarrow asymmetric beam energies

$sin(2\phi_1)$ in $b \rightarrow c\overline{c}s$

- Tree dominated modes, golden channel B \rightarrow J/ ψ K_s
 - Theoretically clean process, $S = -\xi_f sin(2\varphi_1), C \sim 0$
 - Clean experimental signature: 4 tracks
- Recent theoretical improvements in the calculation

of penguin pollution

 $S\simeq \sin\left(2eta
ight)$

Worst case	scenario,	same	systematics	as Belle
------------	-----------	------	-------------	----------

				Belle (1	1 ab^{-1})	PR	L 108 171802
Sample	Quantity	Value	Stat. $(\times 10^{-3})$	Syst.	$(1) (\times 10^{-3})$	Syst.	$(2) (\times 10^{-3})$
				Red.	Non-red.	Red.	Non-red.
$B \to J/\psi K_S$	S	+0.67	29	-	13	-	-
	$\mathcal{A}\equiv -\mathcal{C}$	-0.015	21	-	+45, -23	-	-
$b \to c \bar{c} s$	S	+0.667	23	-	12	-	-
	$\mathcal{A}\equiv -\mathcal{C}$	+0.006	16	-	12	-	-
				Belle II ((50 ab^{-1})		
$B \to J/\psi K_S$	S	-	3.5	1.2	8.3	1.2	4.4
	$\mathcal{A}\equiv -\mathcal{C}$	-	2.5	0.7	+43, -22	0.7	+42, -11
$b \to c\bar{c}s$	S	-	2.7	2.6	7	2.6	3.6
	$\mathcal{A}\equiv -\mathcal{C}$	-	1.9	1.4	10.6	1.4	8.7

With expected improvement due to better vertexing

UT @ Belle II

$B \rightarrow K^{(*)}I^{+}I^{-}$ and $R_{K}^{(*)}$

 LHCb measurements in tension with Standard model decay SM expectations for the ratio of muonic Charged weak force boson, W and electronic final states

• But there are also: $B^+ \rightarrow K^{(*)+}I^+I^-$, $B \rightarrow \pi I^+I^-$, $B \rightarrow X_{s/d}I^+I^-$, $B \rightarrow K^{(*)}T^+T^-$, $B \rightarrow K^{(*)}VV$

- All this final states can be measured at Belle II
- This will allow to disentangle various new physics scenarios

B. Oberhof - 14/11/2019

Possible new decay

Possible new

K meson

particle, Z'

Neutral weak

force boson, Z

Muon, µ+

Antimuon, u-

Missing Energy

- Belle II has the unique capability to study B decay modes with missing E
 - FCNC modes such as $B \to K^{(*)}v\overline{v}$, $B^0 \to v\overline{v}$, $B \to K^{(*)}\tau^{+}\tau^{-}$
 - Semileptonic B decays such as $B \rightarrow D^{(*)}\tau^*v$, $B^* \rightarrow \mu^*v$, and $B^* \rightarrow \tau^*v$
- Precisely known CM energy, combined with exclusive hadronic reconstruction of the tagging B allow the decay daughters of missing energy decays to be exactly identified

$B \to D^{(*)} \tau \nu$

- Measurements from BaBar, Belle and LHCb all independently deviate from SM (combined ~4σ)
- Belle II can measure both charged and neutral B and various final states
- This allows to precisely determine R(D) and R(D*) to constrain or identify different new physics scenarios

Update on $B \rightarrow D^{(*)} \tau v$

- Belle has recently presented new measurements of R(D^(*))
- The new average is closer to the SM prediction, however, on average, a
 3.1 σ discrepancy is still observed

Lepton Flavor Violation

- Processes that are suppressed or forbidden within the SM can potentially be dramatically enhanced by new physics contributions
- Golden channel: lepton flavor violation in T decays: negligible in the SM, but many NP models predictions are close to existing limits
- Very clean searches at B-factories and unambiguous signal of new physics

Dark Forces

• A "dark photon" is a new vector o pseudo-vector particle that couples to

the SM photon via electromagnetic current

 $\mathcal{L}\supset\epsilon A_{\mu}J^{\mu}_{\mathrm{SM}}$

- Two scenarios:
 - The dark photon couples to \rightarrow visible final state
 - It does not couple to SM fermions (less constrained) \rightarrow invisible final state (exp. more difficult) 10^{-2}
- Experimental signature: bump in the recoil mass
- Key ingredients:
 - Single photon trigger
 - Hermetic detector
 (as much as possible)

A possible physics roadmap

First Physics Results

Search for Z'

- Assume there is a Z' vector particle which does not mix with SM photon but couples to SM fermions
- Using 2018 data we measure the cross section for e⁺e⁻ → µ⁺µ⁻ Z' (Z' → invisible)
- We found no evidence for such a process and we set 90% CL UL

B. Oberhof - 14/11/2019

Search for LFV Z'

- If we allow the Z' to have LFV coupling we can get some new signatures
- Using 2018 data we measure the cross section for $e^+e^- \to \mu^+l^-$ (I=e, $\tau)$ Z'
 - $(Z' \rightarrow invisible) \rightarrow no \ evidence$
- For 0 lost energy this is a search for sterile neutrinos

Status & Schedule

The Belle II Collaboration

- In few years the Belle II collaboration has grown to ~1000 researchers from 112 institutions and 26 countries (>300 graduate students active!)
- This is rather unique in Japan (and Asia), the only comparable example is the T2K experiment at JPARC which is also an international collaboration

- 326 graduate (MSc+PhD) students
- 118 institutes
- 26 countries

(B2MM on October 24, 2019)

The Italian Collaboration

- INFN plays an important role in Belle II with 82 people of 9 institutions
- The Italian collaboration is constantly growing:
 - 2014 2016 2018 2020 51 67 76 82 = 46.5 FTE
- The Italian collaboration is active in almost every sub-detector system

as well as in computing, SW and physics analysis

Papers in the pipeline

- 1) "Measurement of the integrated luminosity of the Phase II data of the Belle II experiment", arXiv:1910.05365[hep-ex]
 - Submitted to "Chinese Physics C" after a long and thorough review!

Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment

• 2) "Search for an invisibly decaying Z' boson at Belle II in

 $e^+e^- \rightarrow \mu^+\mu^- (e^+\mu^-)$ + missing energy final states"

- [BELLE2-PUB-DRAFT-2019-004]
- 3) "Search for Axion-Like Particles produced in e⁺e⁻ collisions at Belle II"
 - Unblinding of Phase II data set is in progress

Short Term Plan

Toward 2020, 2021

Competition with LHCb will be tough !

- Before LHCb resumes operation in 2021 we aim to
 - Demonstrate that Belle II performance > Belle performance
 - Catch up LHCb (and also Belle and BaBar)

We expect to have 200 to 400 fb⁻¹ by 2020 summer

Medium to Long Term Plan

<u>SuperKEKB</u>

- We will learn how luminosity and background changes by squeezing beams (now β_v*=2.0 mm→1.0 mm)
- Trying to respect original schedule

• <u>Belle II:</u>

- Full PXD installation: make it ready as soon as possible, install it as late as possible (requires a long shutdown which has to be planned taking in account many factors)
 Replacement of TOP PMTs with ALD PMT (can be installed at any summer shutdown, most likely in 2021)
- DAQ upgrade: new PCIe40

read-out system

Outlook

- Belle and BaBar have been successful in testing the CKM paradigm
- Belle II and SuperKEKB represent a major upgrade B-factory
- The first physics run in 2019 has collected 6.5 fb⁻¹ of e⁺e⁻ collisions
- Machine and detector initial performance are good

 \rightarrow we are on the right track!

- Luminosity and beam background are the main challenges
- Belle II is BOTH competitive AND complementary to LHCb

..looking forward for more data, the fun has just started!

B. Oberhof - 14/11/2019

ありがとうございました!

(Thanks!)

Short Term Physics

Goals for Summer 2020 (200 fb⁻¹)

- → Exclusive V_{ub} from $B \rightarrow \pi l \nu$;
- → Rediscovery of $B \rightarrow D^* \tau \nu$;
- Rediscovery of b → s l⁺l⁻ and of inclusive b → s γ;
- → Publication quality measurement of TD CP asymmetry in $B^{\circ} \rightarrow J/\psi K^{\circ}$;
- → Rediscovery of $B^{\circ} \rightarrow \pi^{\circ}\pi^{\circ};$
- → Resolution and systematics on $D^{\circ} \rightarrow K_{s} \pi^{+} \pi^{-}$ Dalitz Plot;
- → First look at ϕ_2 with GLW and (Belle + Belle II) GGSZ;
- → Z charged states, search for Y states in ISR;
- → Analysis of $\tau \rightarrow h \omega \nu$ and $\tau \rightarrow l \alpha (\rightarrow invis.)$;
- → More Z' searches, Dark Photon and Long Lived Particles (LLP's);
- → Perform measurements for which BaBar and Belle did not use full luminosity.

Belle II vs LHCb in beauty

B. Oberhof - 14/11/2019

Belle II vs LHCb in charm

B. Oberhof - 14/11/2019

Belle II Phase2

- Belle II has recorded its first collisions on April 26th 2018 and has continued taking data until July 17th 2018 with a commissioning vertex detector called BEAST-II in order to study beam-backgrounds close to the IP (Phase 2)
- 2 PXD and 4 DSSD ladders where the highest background is expected
- FANGS FE-I4 based hybrid pixel to study Synchrotron Radiation
- CLAWS for trickle injection bkg
- PLUME double-sided high granularity MIMOSA pixels

$B \rightarrow D^{(*)} \tau v$ Belle II vs LHCb

Figure 2. Belle (a) and LHCb (b) single event displays illustrating the reconstruction of semileptonic *B* meson decays: Trajectories of charged particles are shown as colored solid lines, energy deposits in the calorimeters are depicted by red bars. The Belle display is an end view perpendicular to the beam axis with the silicon detector in the center (small orange circle) and the device measuring the particle velocity (dark purple polygon). This is a $\Upsilon(4S) \rightarrow B^+B^-$ event, with $B^- \rightarrow D^0\tau^-\bar{v}_{\tau}$, $D^0 \rightarrow K^-\pi^+$ and $\tau^- \rightarrow e^-v_{\tau}\bar{v}_e$, and the B^+ decaying to five charged particles (white solid lines) and two photons. The trajectories of undetected neutrinos are marked as dashed yellow lines. The LHCb display is a side view with the proton beams indicated as a white horizontal line with the interaction point far to the left, followed by the dipole magnet (white trapezoid) and the Cherenkov detector (red lines). The area close to the interaction point is enlarged above, showing the tracks of the charged particles produced in the *pp* interaction, the B^0 path (dotted orange line), and its decay $\overline{B^0} \rightarrow D^{*+}\tau^-\bar{v}_{\tau}$ with $D^{*+} \rightarrow D^0\pi^+$ and $D^0 \rightarrow K^-\pi^+$, plus the μ^- from the decay of a very short-lived τ^- .

B. Oberhof - 14/11/2019

Belle II Dataset

Official Data Set

			•	C		
• (Current state	of the art: pro	oc9 + prompt (bucket	7)	ar	Xiv:1910.05365
Exp	Energy	Run range	Lumi good runs	Total good lumi	Lumi all runs	Campaign
3	4S	529-5613	496.7±0.3±3.5/pb[1]	- 5.15 fb-1 (4S) - 6.01 fb-1 (total)	-	_
7	4S	909-4120	555.62 /pb		642.8 /pb	
8 -	4S	43-1022, 1036-1554	1827 /pb		1982.3 /pb	Proc 9
	Continuum	1703-1835	39.02 /pb		39.02 /pb	
	Scan	1025-1031	826.79 /pb		827.0 /pb	
	4S	1836-3123	2764 /pb	1	2973 /pb	Prompt

- Path to samples at KEKCC indicate Good/Bad runs
- Next official reprocessing (proc10) is underway
 - Will include all 2019a data (experiment 7 and 8 only) and will use release-04

https://confluence.desy.de/display/BI/Phase+3+data

TOP Concept

Slot 2

-94

Slot 1

TOP: Concept

- 16 Quartz Cherenkov radiator bars
 - 270cm * 45cm * 2cm each
 - Small expansion volume

mirror

TOP Reconstruction

TOP: Reconstruction

- 20-30 photons/particle/event
 - +5-10 beam background photons
- Compare spatial/temporal distribution
 with pion/kaon hypothesis
 - PDFs depend on exact particle trajectory, recalculated event-by-event
- Sensor requirements:
 - single photon efficiency
 - <50ps single photon time resolution
 - ~few mm spatial resolution
 - Operation in 1.5T B-field
- Readout requirements:
 - 30KHz trigger rate
 - <<100ps full system time resolution

7

TOP quartz bar

TOP: Total Internal Reflection

$sin(2\varphi_2)$: isospin analysis in B \rightarrow hh

• $sin(2\phi_2)$ can be extracted from time-dependent analysis of B $\rightarrow \pi\pi$, $\rho\rho$, $\pi\rho$

 \bar{B}^0

t, c, u

Tree and penguin contribution are comparable but additional weak and strong phases

 $ar{B}^0$

Disentangle the tree contribution and extract $\delta \phi$ by isospin analysis ۲ $A^{(i,j)} \equiv \mathcal{A}(B^{i+j} \rightarrow h^i h^j) \ (h = \pi, \rho / i, j = \pm, 0)$ **A**₀₀ $A^{+-}/\sqrt{2} + A^{00} = A^{+0}$ $\bar{A}^{+-}/\sqrt{2} + \bar{A}^{00} = \bar{A}^{+0}$ \overline{A}_{00} **2**∆¢₂ $|A^{+0}| = |\bar{A}^{+0}|$ $A_{+0} = \overline{A}$

M. Gronau and D. London, PRL 65 3381 (1990)

B. Oberhof - 14/11/2019

$sin(2\phi_2)$: B $\rightarrow \pi\pi$

- Up to date $S_{\pi^{0}\pi^{0}}$ has never been measured \rightarrow eightfold ambiguity on ϕ_{2}
- We need the decay vertex, experimentally:
 - $B^{0}_{sig} \rightarrow \pi^{0}_{\gamma\gamma} (\rightarrow \gamma\gamma) \pi^{0}_{\gamma\gamma} (\rightarrow \gamma\gamma)$
 - $B^{0}_{sig} \rightarrow \pi^{0}_{dal} (\rightarrow e^{+}e^{-}\gamma) \pi^{0}_{\gamma\gamma} (\rightarrow \gamma\gamma)$
 - $B^{0}_{sig} \rightarrow \pi^{0}_{\gamma^{*}\gamma} (\rightarrow \gamma^{*} (\rightarrow e+e-) \gamma) \pi^{0}_{\gamma\gamma} (\rightarrow \gamma\gamma)$
- Photon conversion in the inner detector:
 - 3% of $B^0 \rightarrow \pi^0 \pi^0$ events
 - ~ 5% including π^0 Dalitz decay
- Reconstruction efficiency is crucial!

	Value	$\text{Belle} @ 0.8 \text{ ab}^{-1}$	$\text{Belle2} @ 50 \text{ ab}^{-1}$
$\mathcal{B}_{\pi^+\pi^-}$ [10 ⁻⁶]	5.04	$\pm 0.21 \pm 0.18$ [2]	$\pm 0.03 \pm 0.08$
$\hat{\mathcal{B}}_{\pi^0\pi^0}$ [10 ⁻⁶]	1.31	$\pm 0.19 \pm 0.18$ [1]	$\pm 0.04 \pm 0.04$
${\cal B}_{\pi^+\pi^0}^{\pi^-\pi^-}$ [10 ⁻⁶]	5.86	$\pm 0.26 \pm 0.38$ [2]	$\pm 0.03 \pm 0.09$
$C_{\pi^{+}\pi^{-}}$	-0.33	$\pm 0.06 \pm 0.03$ [3]	$\pm 0.01 \pm 0.03$
$S_{\pi^+\pi^-}^{\pi^-\pi^-}$	-0.64	$\pm 0.08 \pm 0.03$ [3]	$\pm 0.01 \pm 0.01$
$\hat{C}_{\pi^0\pi^0}$	-0.14	$\pm 0.36 \pm 0.12$ [1]	$\pm 0.03 \pm 0.01$
$S_{\pi^{0}\pi^{0}}$			$\pm 0.29 \pm 0.03$

Belle II expectation: $\Delta \phi_{2,\pi\pi} \sim 2^{\circ}$ B. Oberhof - 14/11/2019

$sin(2\phi_2)$: B $\rightarrow \rho\rho$

B. Oberhof - 14/11/2019