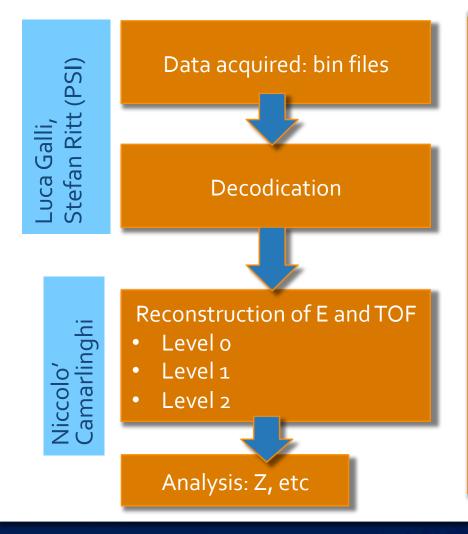
Status Report △E-TOF Software + Analysis

Pisa group

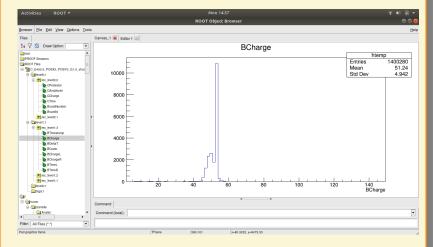
Introduction

Pisa stand-alone ΔE-TOF software re-structured and improved

Motivation:

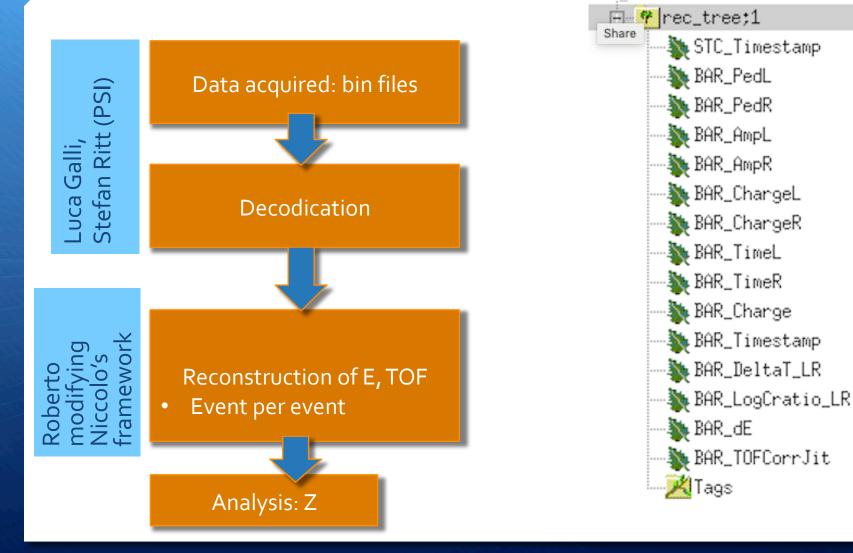

- Old code had a few problems that prevented us from analyzing 40 bars (CNAO March 2019 and GSI data April 2019)
 - Validated only for setup with 2 single bars. With 40 bars a different structure was necessary.
 - ◆ Charge distribution with spikes → energy calibration dubious (wrong, see next)
 - Number of entries in distributions unclear: no event-by-event structure ->
 Impossible to perform MC-data comparison

 - Un-calibrated time stamps of TW itself
 - No direct plotting of waveforms and other useful information was possible
 - No CNAO data calibration \rightarrow No GSI energy and time calibration
- Niccolo' leaving



Today: quick summary of strategy to extract energy and TOF for system with 40 bars

CNAO TOF data processing: OLD



Example problem:

- Software was extensively used and validated for 2-bar setups at CNAO!
- But not appropriate and not tested for setup with 40 bars + STC.
- Was used as basis for implementation by Roberto Zarrella

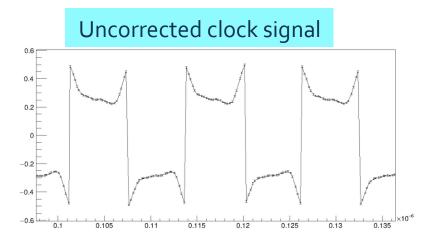
CNAO TOF data processing: NEW

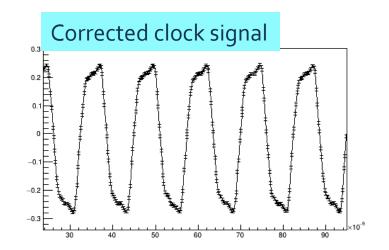
Extract time stamp of TW:

- **CFD method** implemented, applied to each channel.
- Validation procedure:
 - **1**. Check clock shapes for all channels.
 - Correct overflow effects
 - 2. Check waveform shapes of all channels. Noted that 1 board and 1 chip in another board had **hardware** problems: spikes → correct
 - 3. Validate TW resolution for case where 2 bars were hit connected to the same clock (bars 9 and 29), so jitter correction irrelevant; check whether resolution is as expected (~40 ps)
 - 4. Apply jitter correction: evaluate TW resolution again, but for 2 bars hit that were not connected to the same clock. If done correctly, TW resolution should be the same as in step 1.

 $TOF = \frac{t_{TW,plane 1} + t_{TW,plane 2}}{2} - t_{STC} - t_{jitter} - t_{TriggerCell} - t_{Cabling}$

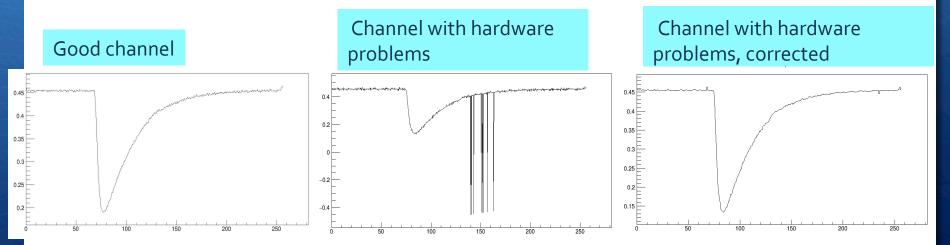
- Time stamp of STC (with help of Rome group):
 - Used CFD method applied to each channel (fit with Fermi-Dirac like function)
 - Extract time by calculating weighted mean (with resolution as provided by Rome group) of channels


Apply corrections:

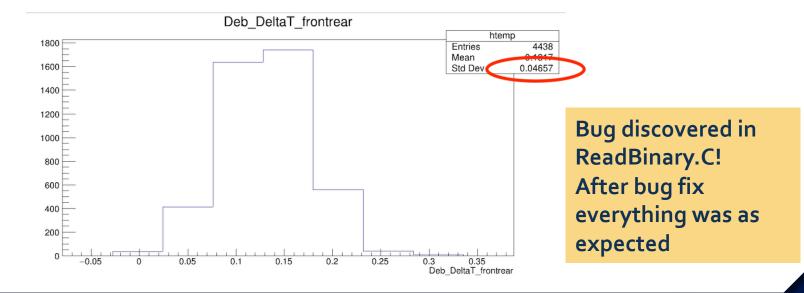

- Jitter between STC and TW
- Trigger cell
- Cabling

Extraction of final TOF

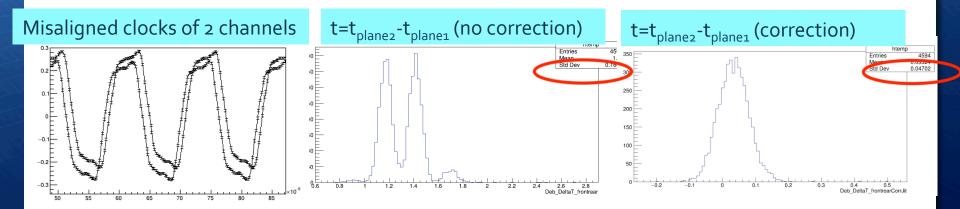
Extract time stamp of TW:


- **CFD method** implemented, applied to each channel.
- Validation procedure:
 - **1**. Check clock shapes for all channels.
 - Correct overflow effects

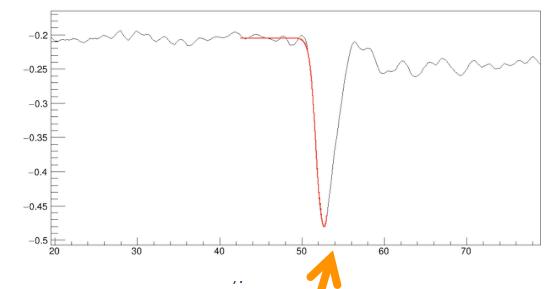
Extract time stamp of TW:


- CFD method implemented, applied to each channel.
- Validation procedure:
 - **1**. Check clock shapes for all channels.
 - Correct overflow effects
 - Noted that 1 board and 1 chip in another board had **hardware** problems: spikes \rightarrow correct
 - 2. Check waveform shapes of all channels. Noted that 1 board and 1 chip in another board had **hardware** problems: spikes → correct

BTW Not shown here, but same was noted for clock signals (but less 'damaging' for analysis)
All channels successfully recovered!!


Extract time stamp of TW:

- **CFD method** implemented, applied to each channel.
- Validation procedure:
 - 1. Check clock shapes for all channels.
 - Correct overflow effects
 - 2. Check waveform shapes of all channels. Noted that 1 board and 1 chip in another board had **hardware** problems: spikes → correct
 - 3. Validate TW resolution for case where 2 bars were hit connected to the same clock (bars 9 and 29), so jitter correction irrelevant; check whether resolution is as expected (~40 ps)



Extract time stamp of TW:

- **CFD method** implemented, applied to each channel.
- Validation procedure:
 - **1**. Check clock shapes for all channels.
 - Correct overflow effects
 - ◆ Noted that 1 board and 1 chip in another board had **hardware** problems: spikes → correct
 - 2. Check waveform shapes of all channels. Noted that 1 board and 1 chip in another board had **hardware** problems: spikes → correct
 - 3. Validate TW resolution for case where 2 bars were hit connected to the same clock (bars 9 and 29), so jitter correction irrelevant; check whether resolution is as expected (~40 ps)
 - 4. Apply jitter correction: evaluate TW resolution again, but for 2 bars hit that were not connected to the same clock. If done correctly, TW resolution should be the same as in step 1.

Vertical and horizontal jitter correction implemented \rightarrow resolution as expected!

Time stamp of STC (with help of Rome group):

TOF

Used CFD method applied to each channel (fit with Fermi-Dirac like function)

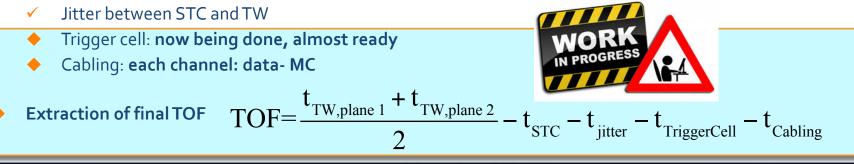
• Extract time by calculating weighted mean (with resolution as provided by Rome group) of channels

е

Cabling

Apply corrections:

- Jitter between STC and TW
- Trigger cell
- Cabling

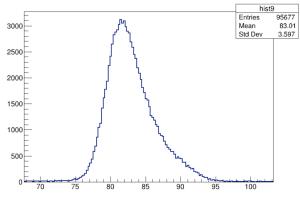

Extraction of final TOF

 $\frac{t_{\text{TW,plane 1}} + t_{\text{TW,plane 2}}}{2}$

 $t_{\rm STC} - t_{\rm jitter} - t_{\rm TriggerCell}$

- Extract time stamp of TW:
- **CFD method** implemented, applied to each channel.
- ✓ Validation procedure:
 - ✓ Check clock shapes for all channels.
 - Correct overflow effects
 - ✓ Noted that 1 board and 1 chip in another board had hardware problems: spikes → correct
 - ✓ Check waveform shapes of all channels. Noted that 1 board and 1 chip in another board had hardware problems: spikes → correct
 - Validate TW resolution for case where 2 bars were hit connected to the same clock (bars 9 and 29), so jitter correction irrelevant; check whether resolution is as expected (~40 ps)
 - Apply jitter correction: evaluate TW resolution again, but for 2 bars hit that were not connected to the same clock. If done correctly, TW resolution should be the same as in step 1.
- Time stamp of STC (with help of Rome group):
 - Used CFD method applied to each channel (fit with Fermi-Dirac like function)
 - Extract time by calculating weighted mean (with resolution as provided by Rome group) of channels

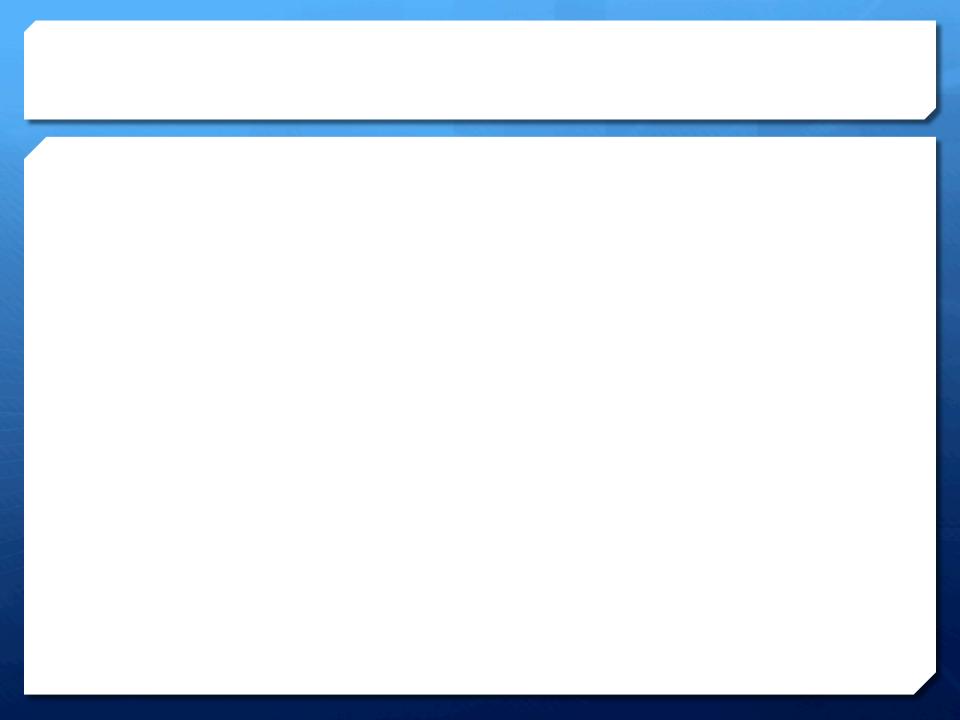
Apply corrections:


Extracting Z

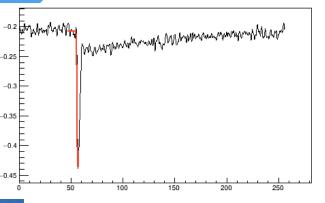
Z-analysis needs:

Energy:

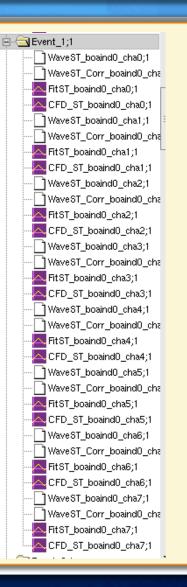
Charge distributions should be calibrated. With actual framework and correct charge distribution for all channels, this is possible.



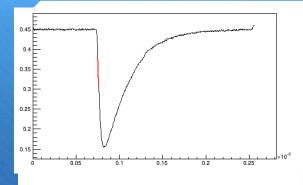
- ✓ No spikes
- Number of entries is number of events that had a non-zero energy deposit in that bar
- MC-data comparison on CNAO data
- MC-data comparison on GSI calibrated data


Conclusion and plans

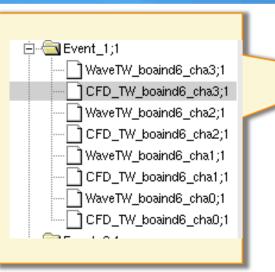
- Pisa stand-alone ΔE-TOF software re-structured and improved
 - 2-bar framework extended to 40 bars
 - Each step in analysis was thoroughly validated (various issues and bugs fixed)
 - Many results independently done by Matteo (now at IEEE!)
 - TOF extraction almost ready
 - Energy calibration being worked on
 - Allows for direct data-MC comparison (event-by-event structure)
- \rightarrow will be used in all stand-alone data takings at CNAO and to check GSI data analysis with SHOE
- To be done:
 - TOF: Finish trigger cell correction and cabling correction
 - Energy calibration
 - Z-extraction
 - MC-data comparison (Z, nbars hits, ...)

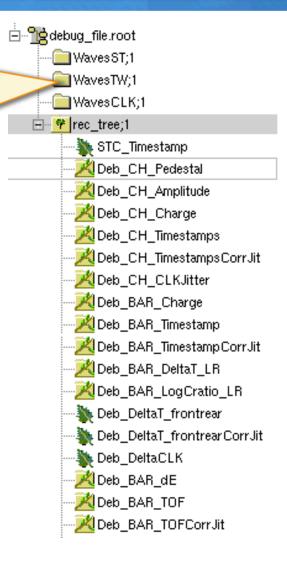

→ Master thesis of Roberto Zarrella

CNAO TOF data processing: NEW



- Allows to plot for a given event(s) all info from all channels of STC
- Naturally will skip all these plots once procedure is fully validated and debugged!




Ė~**°i⊉**debug_file.root |WavesST;1 WavesTW;1 WavesCLK;1 🖻 📲 👎 rec_tree;1 🔖 STC_Timestamp 🖏 Deb_CH_Pedestal 💐 Deb_CH_Amplitude 💐 Deb_CH_Charge 💐 Deb_CH_Timestamps 💐 Deb_CH_TimestampsCorrJit 💐 Deb_CH_CLKJitter 🖏 Deb_BAR_Charge 💐 Deb_BAR_Timestamp 💐 Deb_BAR_TimestampCorrJit 💐 Deb_BAR_DeltaT_LR 💐 Deb_BAR_LogCratio_LR 🔖 Deb_DeltaT_frontrear 🐚 Deb_DeltaT_frontrear CorrJit 🔖 Deb_DeltaCLK 💐 Deb_BAR_dE 💐 Deb_BAR_TOF 💐 Deb_BAR_TOFCorrJit

CNAO TOF data processing: NEW

- Allows to plot for a given event(s) all info from all channels fired
- Details see next time
- Naturally will skip all these plots once procedure is fully validated and debugged!

