

BM Status: analysis & paper

Y.Dong

Foot skype meeting 29/10/19

BM calibration with P @ Trento

Contents

	1	Intr	oduction	1
	2	Materials and Methods		
		2.1	Experimental setup	3
5		2.2	Experimental Plan	7
		2.3	Data selection	8
	3	Res	ults	8
		3.1	Space-time relations	9
		3.2	Efficiency	10
10		3.3	Resolution	11
	4	Disc	cussion	11

- Calibration test performed with Margherita and 4 layers of Microstrip Silicon detectors (MSD), together with the Perugia Team.
- Several noisy and dead strips (up to 4 points on X coordinate and 3 on Y coordinate)
- Multiple Coulomb scattering evaluation ongoing
- Technical paper in preparation (NIM)

Collected data: 200 kevt.: 80 MeV, 0° tilt 100 kevt.: 228 MeV, 0° tilt 100 kevt.: 80 MeV, 5° tilt 100 kevt.: 228 MeV, 5° tilt 100 kevt: 228 MeV, 10° tilt

Preliminary results: Space-time rel

- Space time relations evaluated with the BM time and the MSD tracks extrapolated to the BM sense wire pos.
- Similar Space-time rel. as in FIRST, even if it was evaluated with C @ 80 MeV/u and with different BM working point (HV, pressure, gas)
- Difference between 80 and 228 MeV protons probably given by the different mean free path between two ionisation clusters
- MC Garfield++ simulation studies ongoing

Efficiency

- Hit detection efficiency evaluated as fraction of events with one or two hit detected on even (odd) planes, when three single hits on odd (even) planes have been scored.
- HV efficiency scan previously measured compatible with FIRST measurement
- MSD track extrapolated to the BM cells and check if there's a hit or not.
- The BM is inefficient at the cell border, where the Electric field is weaker
- However the BM cells are staggered: the cell border of one layer correspond to the cell center on the next layer

Resolution

- Using only the BM hits and tracks, the resolution can be evaluated as the residual between the BM fitted track and the hits measurement.
- The result is in a good agreement with the performances measured in FIRST
- The first method depends on the BM reconstruction algorithm and selection criteria.
- It is possible to evaluate the residual using the MSD tracks and the BM hits.
- No dependence on BM reconstruction, but MSD resolution and Multiple Coulomb scattering have to be evaluated properly

Multiple Coulomb Scattering

- The Multiple scattering given by the MSDs (300 μm of Si + 50 μm Kapton) is relevant.
- From FLUKA simulation of a pencil beam:

	Std. Dev. [cm] 80 MeV	Std. Dev. [cm] 228 MeV
MSD1	0.076	0.059
MSD2	0.3	0.13
MSD3	0.38	0.17
MSD4	0.46	0.2

- The evaluation of the MCS is ongoing
- Possibility to minimize it using the hits only from the first two MSD planes
- It could be an issue in FOOT? (MSD with 150µm of Si + Vertex + IT)

6

BM @ GSI

Start Counter jitter: 12.5 ns 10 ns BM TDC 25 ns

• From the arrival of the particle to the measurement of the BM cell signal there are different passages:

1)A particle cross the Start Counter.

- 2)The majority give a trigger signal with a jitter of 12.5 ns (measured by the WD).
- 3)The signal is sampled by the DAQ and it is spread among all the subdetector with a jitter of ~10 ns (Not measured).
- 4)The trigger give the start for the data transfer to the TDC with a jitter of 25 ns (measured by TDC).

BM @ GSI

- For each event taken with the electronic setup, the BM hits time measurement are shifted up to 10 ns.
- This is evident comparing the BM time measurements with the emulsion setup and the electronic setup.
- This issue must be fixed for the next data taking.
- It is possible to modify the reconstruction algorithm and try to variate the T0 for each event to recover the data, increasing the computing time.
- Is someone analysing the GSI data and needs the BM tracks?

Legendre transform

bm_calibration branch:

- Legendre transform + chi2 added as new standard reconstruction algorithm in bm_calibration branch.
- It can be used for hit preselection and first guess of the track parameters
- It needs to be optimized.

new_geom branch:

- When the Legendre transform will be optimized it will be copied also in new_geom.
- No other relevant changes are foreseen

g

To do list

Calibration test @ Trento

- Use of Garfield++ simulation toolkit to check the Space-time relations
- Finalize the study on the Multiple Coulomb Scattering and the MSD track reconstruction and selection criteria.
- Evaluate the BM resolution performances using the MSD tracks and taking into account the MCS effect

Reconstruction and software improvement

- Legendre transform added as standard reconstruction algorithm in bm_calibration branch. It needs to be optimized and next it will be included also in new_geom.
- The Legendre transform should speed up the BM reconstruction.
 What about a tentative to speed up more using parallelization (multithreads)?

GSI data

 If someone is analysing the GSI data and needs the BM data, I can modify the reconstruction algorithm, shift the T0 and try to provide better BM tracks