

Calorimetry for Proton Beam Therapy: a technology transfer adventure

Raffaella Radogna

University College London Proton Beam Therapy group

What is cancer?

- Cells reproduce through *mitosis* (cell division).
- All cells in the body have a preprogrammed lifespan.
- If the cell becomes abnormal it is programmed to die. This is called *apoptosis*.

https://www.genome.gov

 If a sequence of mutations occurs the cell begins to divide uncontrollably (tumour) and eventually spread to other parts of the body: cancer.

R. Radogna

23/10/2019

Cancer in Italy

New cases of cancer, 2015.

Deaths from cancer, 2015.

Survive cancer for 5 years, 2005-2009.

https://www.aiom.it

Cancer Treatment

- Cancer treated with 3 different modalities:
 - Surgery
 - Chemotherapy
 - Radiotherapy
- Often used in combination
- If you can't remove cancer with surgery, radiotherapy is often the next best option

https://www.cancerresearchuk.org

Killing Cancer via DNA Damage

X-rays Pass Through The Body!

Particle Beam Therapy

- Unlike X-rays, charged particles stop!
- Electrons, being lighter, scatter and spread out.
- Protons deposit most dose at the *end* of their path: the *Bragg Peak*.
- Protons stop, but you need to know where...

A Real Bragg Peak!

Medulloblastoma Comparison

R. Radogna https://www.itnonline.com/content/pediatric-brain-tumor-patient-uk-undergoes-first-treatment-proton-therapy

Brain Comparison

Protons

R. Radogna https://www.mayoclinic.org/medical-professionals/neurology-neurosurgery/news/proton-beam-therapy-in-minnesota-and-arizona/mac-20430872

Proton Therapy Around The World

- Almost 100 particle therapy centres expected around the world by 2020, over 30 in Europe
- In Italy 3 operating centres (Catania, Pavia, Trento) and 1 planned (Milano)
- Clatterbridge Cancer Centre (UK) is the world's first hospital-based PBT centre: first two patients in June 1989

23/10/2019

UCLH Proton Therapy Facility

Clatterbridge Cancer Centre

• 60 MeV cyclotron treats eyes with double scattering beamline.

Heidelberg Gantry

Treatment Room

Images courtesy of Jan Timmer, Varian Inc. (not for reproduction)

Conformal Dose Delivery

17

Proton Beam Quality Assurance

- A range of QA checks are necessary for safe PBT treatment:
 - Daily, Weekly, Monthly.
- Daily checks carried out before treatment:
 - Absolute dose, Pencil beam position and size, Range and Energy
- Average time per day per room: 44 min

Daily Range QA @PSI: MLIC

Multilayer ionization chambers (MLICs)

- Combination of ionization chambers are commonly used
- MLICs are expensive, have fast acquisition time but long setup time

O. Actis et al. 2017 Phys. Med Biol. 62 1661

Daily Range QA @PSI

O. Actis et al. 2017 Phys. Med Biol. 62 1661

QuARC:

Quality Assurance Range Calorimeter 1

SuperNEMO Calorimeter

23/10/2019

2 m (assembled)

Calorimeter for Range verification

Plastic scintillator

Advantages

- Price
- Light output
- Water equivalent material

Disadvantages

- Quenching
- Radiation hardness

Calorimeter for Range verification

Plastic scintillator

 Segment block into slices and read out light from each slice individually

- Current prototype uses simple, stable light detection: DSLR/pixel sensor
- Integrate signal from many protons: very large output from 10¹⁰/s
- The proton beam range is estimated from the light-dose distribution

Scintillator Sheets

- Active area: 10 cm x 10 cm
- Thickness: 2-3mm

Readout: CMOS Pixel Sensor

Experimental Setup

Proton Beam: DSLR vs Sensor

Analysed Data: 106.2 MeV

Range Scan

Range Measurement Accuracy **Different degraders** ∆R (mm) 0.1 0.05 12 cm 0 **PMMA** degrader -0.05max range difference is 0.08 mm mean deviation is 0.04 mm -0.1⊦ 50 100 150 200 250 300 reference range (mm)

Radiation Hardness

lon beam test

23/10/2019

Additional Application:

Monitoring intra-fractional motion in a mixed He/C beam

Carbon beam therapy

UC

More conformal dose distributions

2/10/2019

Patient/tumour motion

- Inter-fractional movements, e.g.
 - Patient misalignment
 - Tumour shrinking
 - Cavity filling
- Intra-fractional motion, e.g.
 - Breathing
 - Bowel movements
 - Rectal gassing

Range uncertainty

Needed: Online treatment monitoring
Helium/Carbon mixing

• Similar magnetic rigidity: Accelerate together

• $R_0(He) = 3 \times R_0(C)$: simultaneous treatment and imaging

Particle beam therapy

Relative biological effectiveness RBE

Different types of radiation treatment cause different kinds of damage to the DNA in a tumor →have different biological effectiveness

Helium/Carbon mixing

R. Radogna

PMMA phantom: setup

R. Radogna

SIEMENS

23/10/2019

Off-line beam mixing

E=220MeV/u

23/10/2019

PMMA phantom: results

3D printed lung and lung tumour

Lung phantom: results

Simulate breathing motion

Pelvis phantom 1: setup

Pelvis/hip phantom and prostate cancer

Pelvis phantom 1: rotation

Pelvis phantom 2: setup

Pelvis/hip phantom and prostate cancer

Pelvis phantom 2: results

Simulate rectal gassing light output (a.u.) Beams eye view 0.8 Bladder Prostate 0.6 0.4 0.2 relative difference 0.2 Rectum + balloon 40 ml

UCL

Summary

- Developed a prototype for fast proton range QA
 - Quenching effects considered in the analysis
 - Proton range reconstruction accuracy of 0.04 mm.
 - Robust results and radiation hardness
- Ongoing:
 - Build read-out based on photodiodes
 - Commercialisation

Summary

- He/C mixing offers online motion monitoring
- Extremely high sensitivity to range changes
- Submitted to Phys. Med. Biol
- Many open questions (technical, workflow...)

Thank you !

Additional Material

He/C mixing in clinics

- Advantages:
 - High sensitivity
 - No extra room time
 - Negligible extra dose
- Disadvantages:
 - Not extendable to proton therapy
 - Changes behind C peak still affect He signal
 - Helium beam range might be too low to exit patient
- Open questions:
 - How to quantify changes?
 - How to generate a reference curve?
 - How to react if there is a change?
 - Which tumours can benefit?

Technical aspects of beam mixing

- Ion source: use e.g. methane as main gas and helium as support gas
- Several possibilities for beam generation:
 - Extract C6+ and He2+ (A/Q=2) but low current
 - Extract C3+ and He+ (A/Q=4) but Linac too weak
 - Extract one ion after another and mix in synchrotron
- Simulations needed to prove that mixed beam is stable in synchrotron

SuperNEMO

Neutrinoless double beta decay detector

collaboration

Source foil: ββ decaying isotope

 Tracker: ~2000 drift cells in Geiger mode

 \rightarrow particle identification (for background suppression)

 Calorimeter: ~550 scintillator blocks + PMTs
→ energy and time of flight measurements of particles

Lung Comparison

80.0

5.0

Protons

R. Radogna

23/10/2019 Zhang X, Li Y, Pan X, et al. Int J Radiat Oncol Biol Phys. 2009;77(2):357-366

Range Quality Assurance in Proton Therapy

O. Actis et al. 2017 Phys. Med Biol. 62 1661

Quenching: Birk's Law

R. Radogna

23/10/2019

Beam E 106.2 MeV

Raw data

Protons

Beam E 222.7 MeV

PMMA degraders needed to cover the full range of clinical proton energies

23/10/2019

81.3 MeV Bragg Peak Fit

- Integrate down one column of pixels and calculate the average light intensity for each sheet.
- Fit quenched Bragg curve to this data.
- Reconstruct actual Bragg peak and Water Equivalent Path Length (WEPL).

Robustness checks

Beam Spot Position

Range observed variation <0.05 mm

Beam Spot Size

Range observed variation <0.03 mm

Detector Simulation (Geant4)

R. Radogna

23/10/2019

Intensity Scan

Proton Beam

Helium Beam

Carbon Beam

Online treatment monitoring

- Prompt gamma
- In-beam PET
- Nuclear fragments
- Iono-acoustic

PMMA phantom: results

PMMA phantom: results

R. Radogna

Pelvis phantom 1: translation

Pelvis phantom 2: results

Beams eye view light output (a.u.) Balloon inflation — 0 ml 🗕 30 ml 🗕 45 ml 0.8 ---- 60 ml 0.6 0.4 0.2 relative difference 0.00 0.00 0.07 100 120 residual depth (mm) 20 40 60 80

Bladder Prostate Rectum + balloon **90ml**

Pelvis phantom 2: results

Beams eye view

Experimental Runs

Sep. 2017

Beam tests of 10 mm, 4 mm and 3 mm scintillator sheets with PRaVDA CMOS pixel sensors (PRIAPUS) at the Birmingham Cyclotron (28 MeV beam)

First Bragg Peak!

March 2018

Beam test at the Birmingham Cyclotron (**36 MeV**). A Bragg Peak measurement was carried out to confirm the exact beam energy

NHS England PBT Centres

- Two new national centres:
 - UCLH (London): 4 treatment rooms.
 - The Christie (Manchester): 3 treatment rooms.
 - Pencil beam scanning 70-245 MeV, 360° rotating gantries
- The Christie started treating December 2018; UCLH will start in 2020.
- More private centres in Wales, the Northeast and Reading

VHS Foundation Trus

23/10/2019

UCLH PBT: July 2019

https://www.uclh.nhs.uk/aboutus/NewDev/NCF/Pages/Blogandupdates.aspx

Paramount 23/10/201©ourt

New proton therapy site

Jeremy Bentham (Deceased) 78

R. Radogna

UCLH PBT

