Search for supersymmetry with a compressed mass spectrum in events with a soft τ lepton, a highly energetic jet, and large missing transverse momentum in PP collisions at $\sqrt{s} = 13$ TeV at CMS

Alessandra Cappati

The hunt for new physics beyond the standard model at LHC

- Exam -

25 October 2019

In other words

- DIRECT search for the production of SUSY partner of the tau lepton $(\tilde{\tau})$
- In a scenario where: $\Delta m(\widetilde{\tau},\widetilde{\chi}_1^0) \leq 50~{
 m GeV}$
- Performed in 2016 and 2017 data collected by CMS experiment
- SUSY could describe the particle nature of DM and solve the gauge hierarchy problem
- In models with R parity conservation, in order to explain the DM relic abundance observed (WMAP and Plank Collaborations) the annihilation interaction of $\tilde{\chi}_1^0$ with SM particles is not sufficient \rightarrow model of coannihilation needed: $\tilde{\chi}_1^0$ interacts with SUSY particles and produces SM particles
- The coannihilation xsec is exponentially enhanced by small $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$

$\tilde{\tau}$ particle production

• In pp collisions at the LHC stau production can be:

Indirect, via heavier SUSY particles $(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0})$ decays: $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\pm} j \rightarrow \tilde{\tau} \tilde{\tau} v_{\tau} v_{\tau} j \rightarrow \tau \tilde{\chi}_{1}^{0} \tau \tilde{\chi}_{1}^{0} v_{\tau} v_{\tau} j$ $pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} j \rightarrow \tilde{\tau} v_{\tau} \tilde{\tau} \tau j \rightarrow \tau \tilde{\chi}_{1}^{0} v_{\tau} \tau \tilde{\chi}_{1}^{0} \tau j$

The final state chosen

- In these processes, final states have multiple tau leptons with low $p_T \rightarrow difficult$ to identify more than 1 tau, especially if leptonic decay (lower BR)
- The analysis requires an extra jet from ISR \to exploit the recoil of the ISR jet to detect momentum imbalance and facilitate identification of the low energy τ

Final state: events with exactly 1 tau decaying hadronically and missing transverse momentum recoiling against a high- p_T ISR jet

Analysis selection

 $\begin{array}{c} \text{Events recorded} \\ \text{with a } p_T^{miss} \\ \text{trigger} \end{array}$

Events selected if:

- $p_T^{miss} > 230 \text{ GeV}$, where trigger fully efficient
- Exactly 1 au_h candidate with $|\eta| < 2.1$ and $20 < p_T < 40 {\rm GeV}$
- 1 jet with $p_T > 100 \text{ GeV}$ and $|\eta| < 2.4$
- $\left|\Delta \phi(j_{\rm ISR}, \vec{p}_{\rm T}^{\rm miss})\right| > 0.7$
- Veto on events with b jets or with electrons or muons

Analysis strategy: search for enhancements in the high- m_T part of the spectrum (NON RESONANT SEARCH) Transverse mass is built: $m_T(\vec{p}_T^{\text{miss}}, \tau_h) = \sqrt{2 p_T^{\text{miss}} p_T(\tau_h)(1 - \cos \Delta \phi(\vec{p}_T^{\text{miss}}, \tau_h))}$

2 different signal benchmarks

Signal SUSY Model 1 (SSM1)

- First set of signal events models *χ*[±]₁*χ*[±]₁, *χ*[±]₁*χ*⁰₂ and *τ̃τ̃* production with up to 2 jets
- This benchmark targets τ̃ indirect production (since τ̃ τ̃ process represents
 <2% of tot xsec)
- It is motivated by the importance of chargino-neutralino sector in establishing connections between SUSY and DM (provide the correct coannihilation xsec to explain DM relic amount measured)

Signal SUSY Model 2 (SSM2)

- Second set of signal events models the production of $\tilde{\tau}$ pairs up to 2 jets
- This benchmark targets $\tilde{\tau}$ direct production
- It is motivated by possible reinterpretations in other scenarios with $\tilde{\tau}$ -like particles (MSSM)

• Main background sources are:

- Events contain genuine τ_h candidates, energetic jets, and p_T^{miss} from neutrinos
- Contribution estimated from MC

Events contain b jets and genuine τ_h candidates > Contribution estimated from MC

QCD multijet

Events contain jets misidentified as τ_h

Contribution estimated from data

Results

No excess above the SM bkg is observed

Results

For SSM1

- Upper limit set on the production xsec as a function of $m(\tilde{\chi}_1^{\pm})$ for fixed $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 50$ GeV and $m(\tilde{\tau}) = 0.5 m(\tilde{\chi}_1^{\pm}) + 0.5 m(\tilde{\chi}_1^0)$
- Excluded $\tilde{\chi}_2^0 / \tilde{\chi}_1^{\pm}$ with masses < 290 GeV for $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 50$ GeV and $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\tau}) = 25$ GeV

Results

For SSM2

- Upper limit set on the production xsec as a function of $m(\tilde{\tau})$ and $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$
- <u>Small production *t̃t̃* xsec</u> and <u>low signal acceptance</u> make the exclusion scenario challenging

Results from other searches

Searches for $\tilde{\tau}$ and $\tilde{\chi}_1^0/\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ production were performed already at LEP by the 4 experiments [1-4] in slightly different final states (requiring leptons, jets and missing energy in the final state) in a compressed mass spectrum

 \succ Lower limit on the $\tilde{\tau}$ mass were set (m($\tilde{\tau}$) $\gtrsim 80 \text{ GeV}$)

>Lower limit set also on $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ masses for different SUSY hypotheses (some searches exploited ISR photon tag)

- 1. ALEPH: doi:10.1016/S0370-2693(01)01494-0
- 2. DELPHI: doi:10.1140/epjc/s2003-01355-5
- 3. L3: doi:10.1016/j.physletb.2003.10.010
- 4. OPAL: doi:10.1140/epjc/s2003-01466-y

Results from other searches

At LHC, ATLAS and CMS [1-7] performed searches for $\tilde{\tau}$ and $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ production in <u>compressed mass spectra</u>, exploiting different final states (2 leptons and p_T^{miss} , 2 τ leptons decaying leptonically or leptonically, exploiting the VBF topology)

>Lower limit set also on $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ masses for different SUSY hypotheses but none exceeded LEP measurements

>LEP limits surpassed for the first time by the search presented thanks to ISR-jet tagging

- 1. CMS: doi:10.1007/JHEP03(2018)160
- 2. CMS: doi:10.1016/j.physletb.2018.05.062
- 3. ATLAS: doi:10.1140/epjc/s10052-018-5583-9
- 4. ATLAS: doi:10.1103/PhysRevD.97.052010
- 5. CMS: doi:10.1007/JHEP11(2015)189
- 6. CMS: doi:10.1007/JHEP08(2019)150
- 7. CMS: arXiv:1907.13179

- The search for direct $\tilde{\tau}$ production with $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0) \leq 50$ GeV is challenging because of the low cross section and the low signal acceptance
- Also, the $\tilde{\tau}$ production processes (direct and indirect) result in final states with multiple τ leptons, but the average p_T is $\Delta m/2$ and therefore below the reconstruction threshold \rightarrow choice of reconstructing and identifying only one τ_h lepton in the final state
- The ISR jet tagging technique facilitates the detection of momentum imbalance since the p_T^{miss} is searched in the event recoiling against the high- p_T ISR jet
- The ISR jet helps also the identification of the low energy au lepton decay products
- This technique improved the sensitivity of this analysis w.r.t. previous non-ISR searches

Future prospects

- Many sources of systematic uncertainties:
 - Reconstruction and identification of the low- $p_T \tau_h$
 - Background estimation (especially data-driven multi-jet contribution)
 - Correction factors on ISR jet
- But the sensitivity of this analysis is still dominated by statistical uncertainties
- Perform the analysis with more data will improve the sensitivity:
 - Add 2018 data
 - Perform the analysis with data collected in LHC Run3
 - A future lepton collider will provide a cleaner environment, LEP-like but higher energy and this may improve the analysis sensitivity

Conclusions

- A direct search of SUSY partner of the τ lepton in a compressed mass spectrum was presented
- Data (collected by CMS in 2016 and 2017) do not reveal evidence for new physics
- Limits were set on the production cross section and on $\tilde{\chi}_2^0/\tilde{\chi}_1^{\pm}$ masses
- The results presented are the first to <u>surpass the LEP bounds</u> thanks to the <u>ISR-jet</u> tagging method
- The sensitivity of the analysis, still statistically dominated, will improve with more data