HERD design optimization

- Brainstorming → rough ideas, no quantitative performance studies yet
- Topics
 - Effect of tungsten on charge ID for nuclei
 - 12C @ 1 TeV/n (FLUKA), 30 deg
 - Simplified baseline geometry
 - Rejection of Out-Of-acceptance (OOA) events
 - Performance for photons

Charge measurement must be done at the "top" of the instrument with a light, plastic-free® detector

OOA events

OOA events

$$t_{track} \equiv t_4 \neq min(t_i) \rightarrow Reject track$$

Photons

- Baseline:
 - robust concept
 - detrimental impact on charge ID
- TIC:
 - reduced impact on charge ID
 - small FOV
- Both:
 - energy range already explored by Fermi

Proposal

- Optimized for nuclei detection
- Performance ~ unchanged for electrons
- "Low" energy gamma physics (100 MeV ≤ E ≤ 1 GeV) (performance???)

Silicon Charge Detector (SCD):

- 6-8 layers of Si detectors on each side
- Redundant measurement (event selection + efficiency measurement)

Time-Of-Impact (TOI):

- PSD + arrival time
- Strong guidance for tracking
- Rejection of out-of-acceptance events

• Fiber Tracker (FIT):

- Tracking for charged particles on each side
- Conversion and tracking for photons on each side
 - presentation by X. Wu at 7th HERD workshop, CERN, November 2018