

Solution: Source

Advanced FLUKA Course 2019

Initialize

Inside the LFIRST block

```
Now the parameters for the cylindrical volume source, supposed
to be centered on X/Y/Zbeam (beam position as per BEAMPOS card)
a) cylinder height: Whasou(2)
b) cylinder radius: Whasou(3)
be careful to SAVE the variables
    RCYLND = WHASOU (2)
    HCYLND = WHASOU (3)
```

Sampling

Sampling of the position uniformly inside a Cylindrical volume:

Start with a cylinder centered in the origin, can move later.

We must have dN/dV = constant (V=volume)

- → go to cylindrical variables : r,phi,z
- \rightarrow unit VOLUME =2 pi r dr dphi dz = pi $d(r^2)$ dphi dz
- → means that we have to sample, through random numbers R_j Uniform $z \Rightarrow z_i = -H/2$. $+ R_i * H$ (H is the cylinder height from WHASOU) Uniform phi \Rightarrow phi_i $= R_i * 2$ pi Uniform $r^2 \Rightarrow r^2_k = R_k * r^2_{max}$ (Rmax is from whasou) Go back to x,y,z x=r cos (phi) y=r sin(phi)

Move to the position of the source volume, centered on XBEAm, YBEAM ZBEAM: x=x+BEAM etc

Use R= FLRNDM (x)
So that you stay in the fluka random sequence

Sampling

* Sample the radius of the starting point:

```
RNDCUM = FLRNDM (RNDCUM)
```

RADIUS = RCYLND * SQRT (RNDCUM)

* Sample the azimuthal angle of the starting point:

```
RNDCUM = FLRNDM (RNDCUM)
```

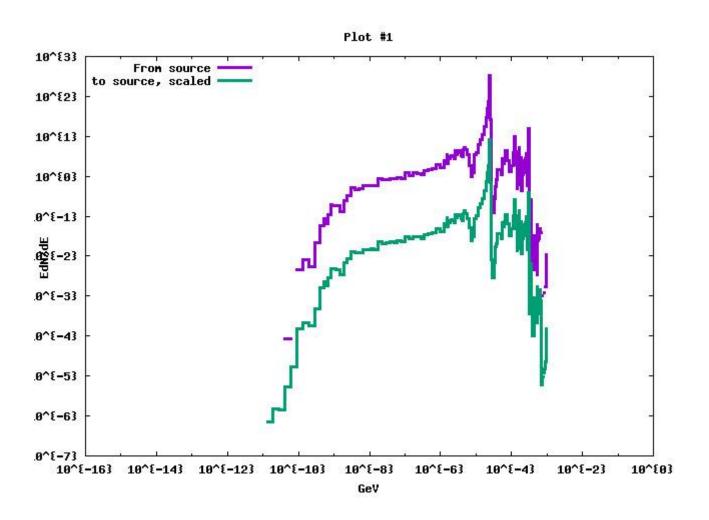
PHIPHI = TWOPIP * RNDCUM

* Sample the height of the starting point:

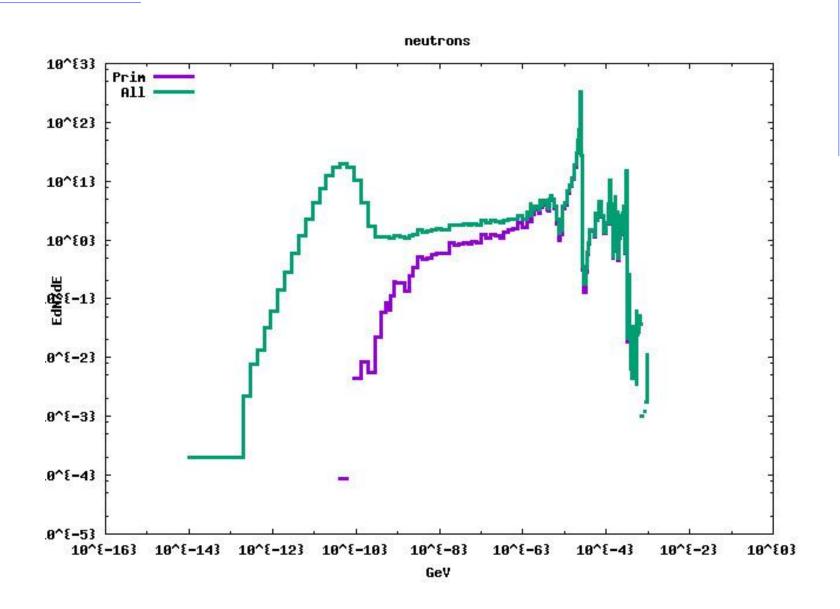
```
RNDCUM = FLRNDM (RNDCUM)
```

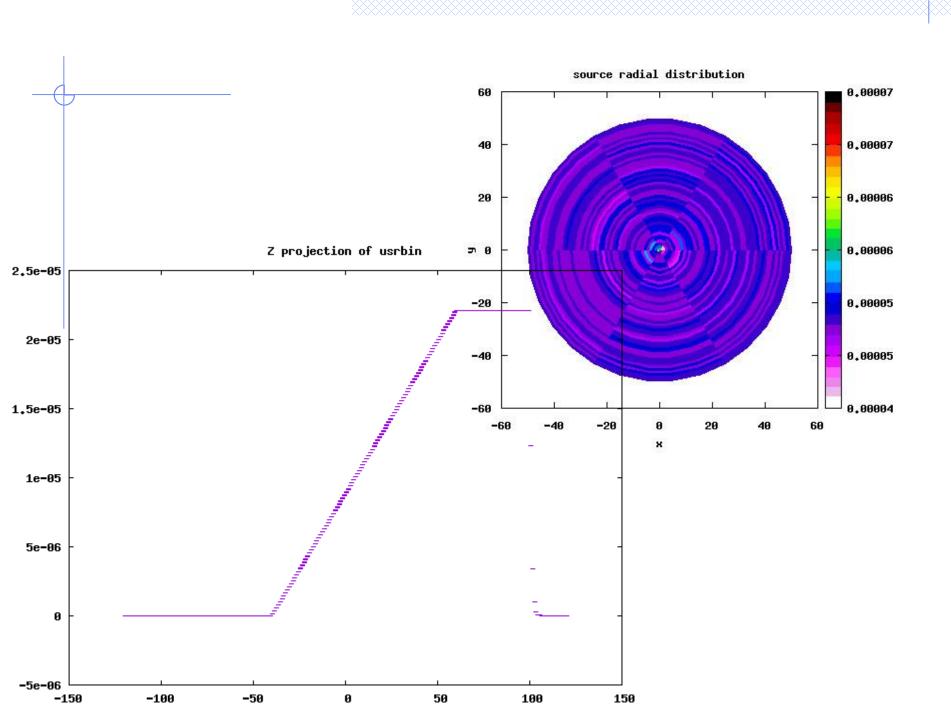
HEIGHT = RNDCUM * HCYLND

XFLK (NPFLKA) = XBEAM + RADIUS * COS (PHIPHI)


YFLK (NPFLKA) = YBEAM + RADIUS * SIN (PHIPHI)

ZFLK (NPFLKA) = ZBEAM + HEIGHT - HCYLND / TWOTWO


Scoring


```
* Track length fluence
USRTRACK -1.0 BEAMPART -48.0 regSRC
                                                 130.0neutPrim
USRTRACK 0.10 1.E-14
                                             &
USRTRACK -1.0 NEUTRON -48.0
                                  regSRC
                                                 130.0neutAll
USRTRACK 0.10 1.E-14
                                             &
* Cylindrical binning of primary fluence
           11.0 BEAMPART -50.0 120.0
USRBIN
                                              120.0prFluence
USRBIN
                     -120.0 120.0
                                  6.0 240.0 &
            0.0
* Cylindrical binning of neutron fluence
           11.0 NEUTRON -50.0 120.0 120.0neFluence
USRBIN
                     -120.0 120.0 240.0 &
USRBIN 0.0
*...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
USERDUMP 100. 1.
                                          dump
```

Results

Results

