

Solution: Biasing

Advanced FLUKA Course 2019

Geometry: layers

RCC shld1	0.0	0.0	-100.0	0.0	0.0	200.0 100.0
RCC shld2	0.0	0.0	-115.0	0.0	0.0	230.0 115.0
RCC shld3	0.0	0.0	-130.0	0.0	0.0	260.0 130.0
RCC shld4	0.0	0.0	-145.0	0.0	0.0	290.0 145.0
RCC shld5	0.0	0.0	-160.0	0.0	0.0	320.0 160.0
RCC shld6	0.0	0.0	-175.0	0.0	0.0	350.0 175.0
RCC shld7	0.0	0.0	-190.0	0.0	0.0	380.0 190.0
RCC shld8	0.0	0.0	-205.0	0.0	0.0	410.0 205.0
RCC shld9	0.0	0.0	-220.0	0.0	0.0	440.0 220.0
RCC shld10	0.0	0.0	-235.0	0.0	0.0	470.0 235.0
RCC shld11	0.0	0.0	-250.0	0.0	0.0	500.0 250.0

X-Y view * 1st shielding layer regSH1 5 +shld2 -shld1 * 2nd shielding layer regSH2 5 +shld3 -shld2 * 3rd shielding layer regSH3 5 +shld4 -shld3 * 4th shielding layer regSH4 5 +shld5 -shld4 * 5th shielding layer regSH5 5 +shld6 -shld5 * 6th shielding layer regSH6 5 +shld7 -shld6 * 7th shielding layer regSH7 5 +shld8 -shld7 * 8th shielding layer regSH8 5 +shld9 -shld8 * 9th shielding layer regSH9 5 +shld10 -shld9 * 10th shielding layer ancian replaced ability

ToDo : Done

- Add photonuclear interaction bias (LAM-BIAS) in the target, knowing that your colleague already run the simulation and found that the probability to get a photon interaction in the target is few /1000
 - If we want, for instance ~ 1 photonuclear/primary, we have to decrease the average interaction length by approx the same factor, for instance (might be optimized):
- LAM-BIAS -0.004 TUNGSTEN PHOTON PHOTON

ToDo : Done

BIASING

BIASING

BIASING

BIASING

BIASING

- Add importance bias in the shielding layers, for all particles,
- knowing that the same colleague found an attenuation factor for dose of the order of 1/500. (use round factors). Start splitting in the second shielding layer.

1.0 @LASTREG

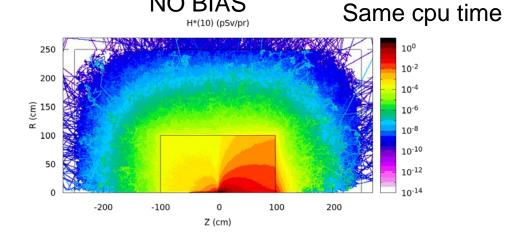
regAl0 regAl0

regSH2 regSH2

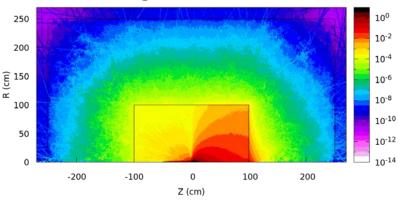
regSH3 regSH3

9 layers, $x^9 = -500$. $2^9 = 512$, fine! Factor 2 each layer

0.0512 regSH10 regSH10

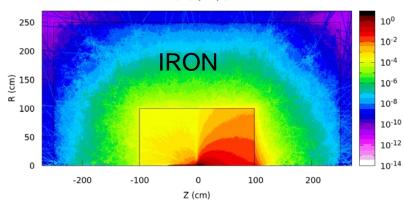

0.0001

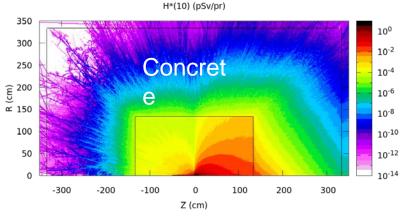
0.0002


0.0004

0.0512

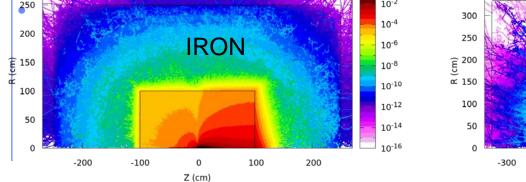
First line sets the "base" importance. Not to 1, because of the possible case with Concrete shield External air: same weight as last layer BIAS H*(10) (pSv/pr)

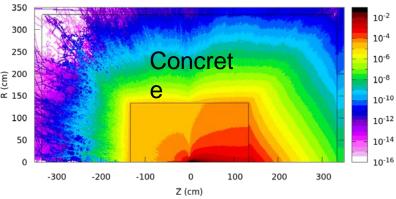

NO BIAS

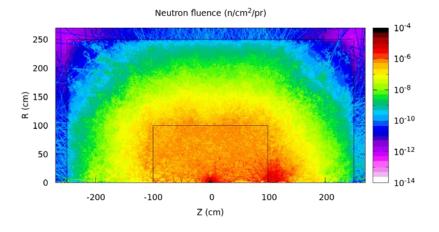

Option :Concrete

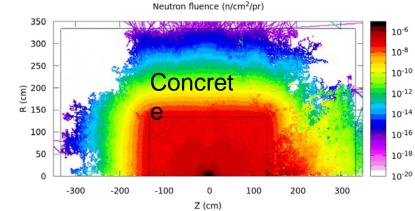
#ifdef ConcrShield BIASING BIASING BIASING	0.0001 1.0 @LASTREG 0.0003 regSH2 regSH2 0.0009 regSH3 regSH3	First set the importances for all particles
INDEXEMPTION CONTRACTOR CONTRACTO	2.0000 regSH10 regSH10 2.0000 regAl0 regAl0 0.0001 1.0 @LASTREG 0.0006 regSH2 regSH2 0.0036 regSH3 regSH3	Then supersede for low en neutrons only

Dose distribution becomes much more directional, it is carried by electromagnetic




. . .


Option :Concrete


E-m Particle fluence travels further in concrete and dominates over neutrons EM particles fluence (particle/cm²/pr) 10⁻² 1

Neutrons are killed by concrete, even with bias

