

Paris, France

Design and performance of the Calorimeter for the FOOT experiment

Lorenzo Scavarda

(INFN Torino, Italy)

FOOT: Purpose

Calculation of the cross section of secondary fragments in:

1 Hadron therapy treatments:

2 Space Missions:

Particles in space (p) when interacting with walls/shielding of spacecraft produce secondary fragments

L. Scavarda

Target-Projectile fragmentation

Fill the gap in experimental data:

- 50-250 MeV for protons
- 50-400 MeV/u for carbon ions
- up to 700 MeV/u for radio protection in the space missions

- p + H ----> no fragments
- C + H **projectile** fragments
- p + C/O ----> **target** fragments
- C + C/O ----> projectile + target fragments

▶ fragments **can be** detected: long range

✤ fragments can't be detected: short ranges (µm) and low energies (eV)

Strategy

Problem: Target fragmentations

Solution: Inverse Kinematic. Shoot C/O on H target fragments have longer range due to Lorentz boost

Problem: Hydrogen Target. Density of gas is too low (low interaction probability)

4

L. Scavarda

FOOT: Design & Detectors

Requirements:

Calorimeter Arrangment

ONE CRYSTAL

FULL DETECTOR

Calorimeter Arrangment

ONE CRYSTAL

Calorimeter Arrangment

Test beam setup

October 2019

fondazione CNAO Centro Nazionale di Adroterapia Oncologica

15 µm SiPM arrays, 25 SiPMs in each tile

SiPM readout board

V1740, 2V, 65 Mhz

Test beam results

L. Scavarda

Test beam of the first module

Test beam on the first module of the calorimeter:

- proton and carbon scans in the 9 crystal with module parallel to the beam line
- \bullet proton and carbon scans with the module rotated of 25°, 30° and 45°
- analysis is ongoing

Calorimeter geometry in FLUKA

The challenge: the crystals of calorimeter have truncated pyramid shape: there isn't among the standard bodies in FLUKA

Solution: intersection of 6 different planes (PLA body)

Difficulty encountered: definition of air region

AIR $5 \operatorname{air} - \dots - (PLA001+PLA002+PLA003+PLA004+PLA005+PLA006)$

n crystal:

AIR 5 air - ... - (PLA001+PLA002+PLA003+PLA004+PLA005+PLA006) - ... - ... - (PLA0n1+PLA0n2+PLA0n3+PLA0n4+PLA0n5+PLA0n6) too many parenthesis!

Solution2: divide the main air in different smaller pieces containing 4 air module boxes each

Full geometry

Full geometry

Warning: the geometry of calorimeter is pointing and some regions could be overlapped: little pieces of air between different modules were added by hand

preliminary MonteCarlo results

Conclusions

- FOOT experiment will measure differential cross section for secondary fragment production relevant for handrontherapy and radioprotection in space
- The combination of different detectors will provide a robust measurement of energy as well as fragment identification through A
- $\frac{1}{2}$ The first calorimeter module was constructed and tested at CNAO
- $\frac{1}{2}$ The performance achieved are encouraging (energy resolution < 2%)
- The full calorimeter geometry in FLUKA is ready and has been added in FOOT framework

Thank you for the attention!

FOOT: Collaboration

FOOT (Fragmentation of Target) is an experiment under construction approved by INFN (Istituto Nazionale di Fisica Nucleare) in 2017

Comprises about 100 members:

- 10 INFN sections
- 5 laboratories (Frascati, CNAO, TIFPA, GSI, IPHC)
- 14 universities (12 Italy + 1 Japan (Nagoya) + 1 Germany (Aachen)

GOAL

Measurement of proton and light nuclei fragmentation cross sections in order to improve the TPS for the hadron therapy and the radio protection for space missions

FOOT: Start Counter

TriggerStart for TOF

- Plastic Scintillator
- Radius = 50 mm
- Thick = $250 \,\mu m$
- Readout: 4 PMTs w/ 400 optical fibers

FOOT: Beam Monitor

• Direction of the beam

- Gaseous drift chamber
- Ar (80%) + CO₂ (20%)

FOOT: Magnets

FOOT: Tracking System

- Target: $C_2H_4 + C$ 1.
- 1. 4 layers of Si **pixel** sensor **before** magnets (20x20 µm pitch)
- 2. 2 layers of Si **pixel** sensor **between** magnets (20x20 µm pitch)
- **3**. **3** layers of Si **strip** sensor **after** magnets (120 µm pitch)

FOOT: Time Of Flight

- 2 layers x20 bars of plastic scintillator
- readout w/ SiPMs

- dE/dx
- Stop for TOF
 - Z

Mass Reconstruction

Possibility to distinguish isotopes!

Space Radio-Protection

Mission to Mars!

No magnetosphere Very thin atmosphere No protection to GCR and SPE

Travel: 1.8 mSv/day On Mars: 0.64 mSv/day

On Earth: 2.64 mSv/year

Best determination of A

Two procedures for the best determination of A:

• a standard minimization:

$$f = \left(\frac{TOF - T}{\sigma_{TOF}}\right)^2 + \left(\frac{p - P}{\sigma_p}\right)^2 + \left(\frac{E_k - K}{\sigma_{E_k}}\right)^2 + (A_1 - A, A_2 - A, A_3 - A) \begin{pmatrix} B_{00} & B_{01} & B_{02} \\ B_{10} & B_{11} & B_{12} \\ B_{20} & B_{21} & B_{22} \end{pmatrix} \begin{pmatrix} A_1 - A \\ A_2 - A \\ A_3 - A \end{pmatrix}$$
(9)

where TOF, p, E_k , A_1 , A_2 and A_3 are the reconstructed quantities, σ_{TOF} , σ_p , σ_{E_k} are the uncertainties, T, P, K and A are the fit output parameters.

• an Augmented Lagrangian Method (ALM):

The ALM approach performs a constrained minimization in a large parameter space. All the details of the method can be find in [100]. Here only the basilar points are recalled, to allow a better comprehension of the text. The method minimizes a Lagrangian function L expressed by:

$$L(\vec{x},\lambda,\mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x})$$
(11)

where f, in analogy with the standard χ^2 method, is defined as:

$$f(\vec{x}) = \left(\frac{TOF - T}{\sigma_{TOF}}\right)^2 + \left(\frac{p - P}{\sigma_p}\right)^2 + \left(\frac{E_k - K}{\sigma_{E_k}}\right)^2 \tag{12}$$

both the summation runs over the three constraints $(A_1, A_2 \text{ and } A_3)$ with the relation:

$$\sum_{a} \lambda_{a} c_{a} (\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2} (\vec{x}) = \lambda_{1} (A_{1} - A) + \lambda_{2} (A_{2} - A) + \lambda_{3} (A_{3} - A) + \frac{1}{2\mu} \left((A_{1} - A)^{2} + (A_{2} - A)^{2} + (A_{3} - A)^{2} \right)$$
(13)

where λ are variable Lagrange multiplier parameters, while μ is the penalty term fixed to 0.1. The use of a penalty term forces the fit to give more strength to the constraints: the lower is μ the greater is the effect of the constraints.

from FOOT Conceptual Design Report

L. Scavarda

Charge Reconstruction

TOF and Start counter tested at CNAO:

- $\sigma_{\rm t}$ ~ 90 160 ps for protons
- $\sigma_{\rm t}$ ~ 40 50 ps for carbons

Bethe Bloch + Δ E-TOF:

From FLUKA simulations + σ_t measured at test beam:

- 2% < σ_z < 6% for ¹⁶O and ¹H respectively
- misidentification $\leq 1\%$

Mass Reconstruction

17% of fragments produce neutrons in the calorimeter that escape the detector

Combining the 3 methods:

Redundancy of the FOOT detector allows to detect such events and remove them