
Tracking in magnetic fields

Advanced FLUKA Course

2

Magnetic field tracking in FLUKA
FLUKA allows for tracking in arbitrarily complex magnetic fields.
Magnetic field tracking is performed by iterations until a given
accuracy when crossing a boundary is achieved.

Meaningful user input is required when setting up the parameters
defining the tracking accuracy.

Furthermore, when tracking in magnetic fields FLUKA accounts for:
 The precession of the mcs final direction around the particle direction:

this is critical in order to preserve the various correlations embedded in
the FLUKA advanced MCS algorithm

 The precession of a (possible) particle polarization around its direction of
motion: this matters only when polarization of charged particles is a
issue (mostly for muons in Fluka)

 The decrease of the particle momentum due to energy losses along a
given step and hence the corresponding decrease of its curvature
radius. Since FLUKA allows for fairly large (up to 20%) fractional energy
losses per step, this correction is important in order to prevent excessive
tracking inaccuracies to build up, or force to use very small steps

3

Magnetic field tracking in FLUKA

The red line is the path actually
followed,
the magenta segment is the last
substep, shortened because of a
boundary crossing

α = max. tracking angle
(MGNFIELD)
ε = max. tracking/missing error

(MGNFIELD or STEPSIZE)
ε ‘ = max. bdrx error (MGNFIELD or
STEPSIZE)

The true step (black) is approximated by linear
sub-steps. Sub-step length and boundary
crossing iteration are governed by the required
tracking precision

The end point is ALWAYS on the true path,
generally NOT exactly on the boundary, but
at a distance < ε ‘ from the true boundary
crossing (light blue arc)

4

Setting the tracking precision

 α largest angle in degrees that a charged particle is allowed to
travel in a single sub-step. Default = 57.0 (but a maximum of 30.0
is recommended!)

 ε upper limit to error of the boundary iteration in cm (ε’ in fig.). It
also sets the tracking error ε. Default = 0.05 cm

MGNFIELD α ε Smin Bx By Bz

IF α and /or ε are too large, boundaries may
be missed (as in the plot).
IF they are too small, CPU time explodes..
Both α and ε conditions are fulfilled during
tracking
 Set them according to your problem
Tune ε by region with the STEPSIZE card
 Be careful when very small regions exists in
your setting: ε must be smaller than the region
dimensions!

5

Setting the tracking precision

 Smin minimum sub-step length. If the radius of curvature is so
small that the maximum sub-step compatible with α is smaller
than Smin, then the condition on α is overridden. It avoids endless
tracking of spiraling low energy particles. Default = 0.1 cm

MGNFIELD α ε Smin Bx By Bz

Particle 1: the sub-step corresponding to
α is > Smin -> accept
Particle 2: the sub-step corresponding to
α is < Smin -> increase α

Smin can be set by region with the
STEPSIZE card

6

Setting precision by region

 Smin: (if what(1)>0) minimum step size in cm
Overrides MGNFIELD if larger than its setting.

 ε (if what(1)<0) : max error on the location of
intersection with boundary.
 The possibility to have different “precision” in different regions

allows to save cpu time
 Smax: max step size in cm. Default:100 000. cm for a

region without mag field, 10 cm with mag field.
 Smax can be useful for instance for large vacuum regions with

relatively low magnetic field
 It should not be used for general step control, use EMFFIX,

FLUKAFIX if needed

STEPSIZE Smin/ε Smax Reg1 Reg2 Step

7

Possible loops in mag.fields

 Although rare, it is PHYSICALLY possible that a particle loops
for ever (or for a very long time). Imagine a stable particle
generated perpendicularly to a uniform B in a large enough
vacuum region: it will stay on a circular orbit forever!

 Suppose now that the orbit enters in a non-vacuum region (here
we can at least loose energy..) but the boundary is missed due to
insufficient precision. This results again in a never-ending loop.

Luckily, it almost never happens. Almost.

In case of doubt:
Use the TIME-CUT card, which allows to set transport time cut-
offs after which the event is discarded.

8

Example: uniform dipole field

 Uniform magnetic fields can be defined through the MAGFIELD
card without need of programming / compiling. In this case Bx,
By, Bz are the components of the magnetic field, not the
normalized vectors, i.e. Bx ≠ BTX, …

 The field for a dipole of radius R[cm] should normally be set to
(CS is the charge state, e.g. 1 for e- or proton):

B[T] = 1.D+13 * Pbeam[GeV/c] / (Clight[cm/s] * R[cm] * CS)

 For any other case, Bx, By and Bz need to be set to 0.0 and
magfld.f must be customized and compiled.

 In all cases, magnetic field must be activated in the given region
through ASSIGNMA, WHAT(5) = 1.0

MGNFIELD α ε Smin Bx By Bz

from (DBLPRC)

from (BEAMCM)

9

The magfld.f user routine
This routine allows to define arbitrarily complex magnetic fields:
(uniform fields can be defined through the MGNFIELD card)
SUBROUTINE MAGFLD (X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC)

Input variables:
x,y,z = current position
nreg = current region

Output variables:
btx,bty,btz = cosines of the magn. field vector

B = magnetic field intensity (Tesla)
idisc = set to 1 if the particle has to be

discarded
 All floating point variables are double precision ones!
 btx, bty, btz must be normalized to 1 in double precision
 magfld.f is called only for regions where a magnetic field has been

declared through ASSIGNMAT

magfld: example toroidal field
SUBROUTINE MAGFLD (X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC)

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)‘

INCLUDE '(NUBEAM)'

IF (NREG .EQ. NRHORN) THEN
RRR = SQRT (X**2 + Y**2)
BTX =-Y / RRR
BTY = X / RRR
BTZ = ZERZER
B = 2.D-07 * CURHOR / 1.D-02 / RRR

END IF

In this case, the cosines are
automatically normalized.
Otherwise, user MUST ensure
that
BTX**2+BTY**2+BTZ**1=ONEONE

USEFUL TIP:
This is a user defined include file, containing for example
COMMON /NUBEAM/ CURHORN, NRHORN, ……
It can be initialized in a custom usrini.f user routine, so that
parameters can be easily changed in the input file

This gives a versor ⊥ radius
in a plane ⊥ z axis

B intensity depending
on R and current

Standard FLUKA includes : KEEP THEM

10

magfld: example contnd, solenoid…
Different fields in different regions:

IF (NREG .EQ. NRHORN) THEN
……

ELSE IF (NREG .EQ. NRSOLE) THEN
BTX = ZERZER
BTY = ZERZER
BTZ = ONEONE
B = SOLEB

ELSE IF (NREG .EQ. NRMAP) THEN
CALL GETMAP (X, Y, Z, BTX, BTY, BTZ, B)

ELSE
WRITE (LUNOUT, *) ‘MGFLD, WHY HERE ?
WRITE (LUNOUT, *) NREG’
STOP

END IF

This gives a perfect solenoid
field

Intensity calculated at initialization

Add a bit of protection.

Get values from field map

The user can add more routines, they have to be included in the linking
procedure
Always :

include the three standard FLUKA INCLUDEs
use FLUKA defined constants and particle properties for consistency

Possible, not explained here : call C routines 11

Fieldmap reading

12

 usrini.f: Read in values from fieldmap file and fill commons
Example (field points on regular grid in X, Y, Z):

REAL*8, DIMENSION(NPOINTS) :: xB, yB, zB, Bx, By, Bz
common / BfldVal / xB, yB, zB, Bx, By, Bz

call OAUXFI('./FieldMap.txt‘, 95, 'OLD', IERR)
if (IERR .GT. 0) STOP 'FILE NOT FOUND'

DO i=1, NPOINTS
READ(95,’(A)’,IOSTAT=IOstatus) Xval, Yval, Zval, BXval, BYval, BZval
IF(IOstatus.NE.0) exit
xB(i) = Xval
yB(i) = Yval
zB(i) = Zval
Bx(i) = BXval
By(i) = BYval
Bz(i) = BZval

ENDDO

Fieldmap reading

13

 magfld.f: Call trilinear interpolation routine for each component Bx,
By, Bz (see https://en.wikipedia.org/wiki/Trilinear_interpolation)

SUBROUTINE MAGFLD (X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC)
REAL*8, DIMENSION(NPOINTS) :: xB, yB, zB, Bx, By, Bz
common / BfldVal / xB, yB, zB, Bx, By, Bz

I=FLOOR((X-X0)/dX)
J=FLOOR((Y-Y0)/dY)
K=FLOOR((Z-Z0)/dZ)

M = k*nx*ny + j*nx + (i+1)

FX = 1.D0 - (X-X0-I*dX)/dX
FY = 1.D0 - (Y-Y0-J*dY)/dY
FZ = 1.D0 - (Z-Z0-K*dZ)/dZ

CALL FLDVAL(Bx, SIZE(Bx), M, nx, ny, fx, fy, fz, bxVal)
CALL FLDVAL(By, SIZE(By), M, nx, ny, fx, fy, fz, byVal)
CALL FLDVAL(Bz, SIZE(Bz) ,M, nx, ny, fx, fy, fz, bzVal)

B = SQRT(bxVal**2 + byVal**2 + bzVal**2)

X,Y,Z indices into i,j,k

M is index of corner of cube with smallest x,y,z

Weighting factors for X,Y,Z

Call interpolation
subroutine for
each component

BTX=bxVal/B, BTY=byVal/B, BTZ=bzVal/B

https://en.wikipedia.org/wiki/Trilinear_interpolation

Fieldmap reading

14

 fldval.f: Custom user routine for trilinear interpolation (see
https://en.wikipedia.org/wiki/Trilinear_interpolation)
SUBROUTINE FLDVAL (FLD, DIM, M, NX, NY, FX, FY, FZ, FVAL)

* Takes a sorted 1d-array with field values and the index of the
* nearest point with smallest X, Y, Z and its fractional distance
* in grid cell to the point of interest (POI) and interpolates the
* field values from the 8 neighboring points to the POI.
*
* Input variables:
* fld = Sorted 1-d array of field values representing 3d array
* (x increments every line, y increments every nx lines
* z increments every nx*ny lines)
* dim = size of 1-d array
* m = index of cube corner around POI with smallest X,Y,Z
* nx = grid size in X
* ny = grid size in Y
* fx = weighting factor for X
* fy = weighting factor for Y
* fz = weighting factor for Z
* Output variables:
* fval = interpolated value of field at POI

https://en.wikipedia.org/wiki/Trilinear_interpolation

Fieldmap reading

15

 fldval.f: Custom user routine for trilinear interpolation (see
https://en.wikipedia.org/wiki/Trilinear_interpolation)
SUBROUTINE FLDVAL (FLD, DIM, M, NX, NY, FX, FY, FZ, FVAL)

c Compute weighting factors for the 8 corners:
f1 = fx*fy*fz
f2 = (1.D0-fx)*fy*fz
f3 = fx*(1.D0-fy)*fz
f4 = (1.D0-fx)*(1.D0-fy)*fz
f5 = fx*fy*(1.D0-fz)
f6 = (1.D0-fx)*fy*(1.D0-fz)
f7 = fx*(1.D0-fy)*(1.D0-fz)
f8 = (1.D0-fx)*(1.D0-fy)*(1.D0-fz)

c Compute field value at POI (point of interest):
fval = fld(m)*f1 + fld(m+1)*f2 +

& fld(m+nx)*f3 + fld(m+nx+1)*f4 +
& fld(m+ny*nx)*f5 + fld(m+ny*nx+1)*f6 +
& fld(m+ny*nx+nx)*f7 + fld(m+nx*ny+nx+1)*f8

https://en.wikipedia.org/wiki/Trilinear_interpolation

Initialization/output routines
Very useful to initialize and propagate variables common to other user
routines:
 usrglo.f knows nothing about the simulations, but can provide

information to the other initialization stages. Can be called many
times USRGCALL

 usrini.f knows everything about the problem. Here one can, for
instance, use information about materials, regions etc.
(can use names) USRICALL

 usrein.f is useful when doing event-by-event user scoring , it can for
instance reset and reinitialize event-dependent user quantities

(no card)

Associated OUTPUT routines:
 usrout.f called at the end of the run USROCALL
 usreout.f called at the end of each event (no card)

16

usrini.f :example

17

SUBROUTINE USRINI (WHAT, SDUM)

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)‘

…..
DIMENSION WHAT (6)
CHARACTER SDUM*8

….
CHARACTER MAPFILE(8)
INCLUDE '(NUBEAM)‘

IF (SDUM .EQ. 'HORNREFL') THEN
NRHORN = WHAT (1)
CURHORN = WHAT (2)

ELSE IF (SDUM .EQ. ‘SOLENOID‘) THEN
SOLEB = WHAT (2)
NRSOLE = WHAT(1)

cont’d…

Default declarations

Here we store our variables

Here we initialize region numbers
And parameters for the magfld.f
routine

usrini.f: example cont’d

18

ELSE
MAPFILE=SDUM
MYUNIT=21
CALL OAUXFI (MAPFILE, MYUNIT, ‘OLD’ , IERR)
CALL READMAP(MYUNIT)
CLOSE (21)
NRMAP= WHAT (1)

END IF
RETURN

Use the SDUM field to read the name of
the magnetic field map file

Open the field map

Call a user procedure that reads and
stores the field map to be used by
magfld.f

This usrini needs 3 cards to initialize all parameters:, like i.e.

USRICALL MyHorn 150000. HORNREFL
USRICALL MySole 1. 3 SOLENOID
USRICALL Mapped myflmap

The region names in the WHAT()’s are automatically parsed and
converted to region numbers by FLUKA
(same would happen with materials, scoring ..)

Roto-translation routines:

19

The DOTRSF routine executes the KROTATth transformation as defined by
ROT-DEFI on NPOINT points, defined by the X-,Y-,ZPOINT arrays, w ith a
(possible) translation included

DORTNO does the same w ithout the translation (eg for velocity vectors)

UNDOTR performs the inverse transformation, w ith a (possible)
translation included

UNDRTO performs the inverse transformation, w ithout the translation

SUBROUTINE DOTRSF (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
SUBROUTINE DORTNO (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
SUBROUTINE UNDOTR (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
SUBROUTINE UNDRTO (NPOINT, XPOINT, YPOINT, ZPOINT, KROTAT)
…
DIMENSION XPOINT (NPOINT), YPOINT (NPOINT), ZPOINT (NPOINT)
…

Magfld.f & Roto-translation routines

20

Translate coordinates to magnet prototype, where B is easily
defined, e.g. quadrupole aligned with Z axis at X=0, Y=Y0:

The magnetic field vector is then anti-rotated (not translated!) to
the replica using the same rotation index:

SUBROUTINE MAGFLD(X, Y, Z, BTX, BTY, BTZ, B, NREG, IDISC)
[…]
INCLUDE ‘(LTCLCM)’
[…]
XLOC = X; YLOC = Y; ZLOC = Z
CALL DOTRSF (1, XLOC, YLOC, ZLOC, MLATTC)
YLOC = YLOC – Y0
RRR = SQRT(XLOC**2+YLOC**2)
IF (RRR.gt.tol)
BTX = YLOC/RRR
BTY = XLOC/RRR
BTZ = ZERZER
B = k * RRR

[…]

CALL UNDRTO (1, BTX, BTY, BTZ, MLATTC)

Transform Y to origin

Bring position to
prototype

Apply ‘standard’ quad field expressions

Rotate B vector to
replica orientation

Compute B modulus

Except if
RRR0

Visualization with FLAIR

21

It is possible to visualize the magnetic field (intensity, vector
or both) with Flair using the tab.

 If the magnetic field is implemented with user routines, then you
need to specify the executable in Flair in the tab:

 Flair will run the executable and evaluate the field intensity and
vector on a specified grid

Visualization with FLAIR

22

It is possible to visualize the magnetic field (intensity, vector
or both) with Flair using the tab.

Select Field Intensity,
Field Vector or

both (Field)
Scale vector

arrows
Specify grid

 Choose one of the geometry panels (Red, Green, Blue, Magenta)
and change the “Type” to be plotted

 Clicking the button,
Flair will evaluate the magnetic field and then plot it

Visualization with FLAIR

23

Example: FLUKA simulation of MU2E-experiment (FNAL)

Visualization with FLAIR

24

Example: FLUKA simulation of MU2E-experiment (FNAL)

Visualization with FLAIR

25

Example: FLUKA simulation of MU2E-experiment (FNAL)

Randomizing B: ray-tracing
 A large fraction of accidents in accelerators with

potential radiation protection consequences is linked
to one or several magnets having wrong field
intensities (operator settings, magnet short, power
failure, error in polarity,…).

 The RP analysis of a machine should include the
definition of the phase space of mis-steered beams
(ray-trace). Collimators are installed to shield rays
that could lead to unacceptable exposure.

 FLUKA 3D geometry and magnetic tracking
capabilities provide a powerful way to obtain the mis-
steering ray-trace, especially when several magnets
are involved

26

Randomizing B: ray-tracing, process
1) Check transport for nominal conditions
2) Set a new random value of B for every primary, e.g.:

3) Set all materials to vacuum, except for collimators
4) Plot trajectories. Intensities ~ k * probability

27

DATA partnum / 2 /
…
IF (partnum. ne . Numpar(1)) THEN

B = (FLRNDM() – 0.5D0) * B0
END IF
…

Strength of dipole is
randomized between [-B0, +B0]
Mis-alignment, and other effects
can be introduced similarly

Ray-tracing in
an XFEL dump-
line

“Monte Carlo simulation of beam mis-steering at electron accelerators”,
in proceedings of SATIF-11

28

END

Example: magnetic field in CNGS
Cern Neutrino to Gran Sasso

The two magnetic lenses (blue in the sketch) align positive
mesons towards the decay tunnel, so that neutrinos from the
decay are directed to Gran Sasso, ~730km away
Negative mesons are deflected away
The lenses have a finite energy/angle acceptance

Example : the magfld.f routine
Magnetic field
intensity in the
CNGS horn

A current
≈150kA, pulsed,
circulates
through the
Inner
and
Outer
conductors
The field is
toroidal,
B÷1/R

magfld: results
charged particle tracks
in the CNGS geometry
1 event
USRBIN R-Z

Focused
De-focused
Escaping..many

usrglo.f :example

33

SUBROUTINE USRGLO (WHAT, SDUM)

INCLUDE '(DBLPRC)'
INCLUDE '(DIMPAR)'
INCLUDE '(IOUNIT)‘

…..
DIMENSION WHAT (6)
CHARACTER SDUM*8
INCLUDE '(NUBEAM)‘

IF (WHAT(1) .GT. ZERZER) THEN
ROTTRG = WHAT(1)
LTGMISA = .TRUE.
TRATARG = ZERZER
IF (WHAT(2) .GT. ZERZER) TRATARG = WHAT(2)

RETURN

Default declarations

Here we store our variables

Suppose we have a lattic.f routine
That rotates the target to simulate misalignment: here a flag and the
rotation / translation amounts are set

magfld.f multipoles

Magnetic scalar potential for magnet with 2 x n poles,
e.g. n=1 dipole, n=2 quadrupole, etc.:

Coordinates can then be transformed to Cartesian and Bn
computed as:

This includes normal and skew configurations, e.g. for normal
quadrupole J2=0

Φ𝑛𝑛 = 𝑟𝑟𝑛𝑛 𝐽𝐽𝑛𝑛 cos 𝑛𝑛𝜃𝜃 + 𝐾𝐾𝑛𝑛 sin 𝑛𝑛𝜃𝜃

𝑩𝑩𝒏𝒏 = −𝛻𝛻Φ𝑛𝑛

34

magfld.f multipoles – quadrupoles
Quadrupoles

RRR = SQRT (X**2 + Y**2)
B = (K1 * 1.D-04) * (BRho) * RRR

With
K1 [m-2] from MAD lattice
BRho [T cm] = 1.D+09 * Pbeam / Clight

Normal Quadrupoles Skew Quadrupoles

BTX = Y / RRR BTX =-X / RRR
BTY = X / RRR BTY = Y / RRR
BTZ = ZERZER BTZ = ZERZER

Remember: Fm = q (v x B)

change X/Y signs to reverse polarity

[cm/s] from (DBLPRC)

[GeV/c] from (BEAMCM)

35

magfld.f multipoles - sextupole

BTX = 5.D-01 * (K2 * 1.D+06) * BRho * (X**2 - Y**2)
BTY = (K2 * 1.D+06) * BRho * (X * Y)
BTZ = ZERZER

B = SQRT(BTX**2 + BTY**2)

BTX = BTX/B
BTY = BTY/B

With
K2 [m-3] from MAD lattice
Brho = B0 * rho [T cm] = 1.D+09 * Pbeam / Clight

[cm/s] from (DBLPRC)

[GeV/c] from (BEAMCM)

36

	Tracking in magnetic fields
	Magnetic field tracking in FLUKA
	Magnetic field tracking in FLUKA
	Setting the tracking precision
	Setting the tracking precision
	Setting precision by region
	Possible loops in mag.fields
	Example: uniform dipole field
	The magfld.f user routine
	magfld: example toroidal field
	magfld: example contnd, solenoid…
	Fieldmap reading
	Fieldmap reading
	Fieldmap reading
	Fieldmap reading
	Initialization/output routines
	usrini.f :example
	usrini.f: example cont’d
	Roto-translation routines:
	Magfld.f & Roto-translation routines
	Visualization with FLAIR
	Visualization with FLAIR
	Visualization with FLAIR
	Visualization with FLAIR
	Visualization with FLAIR
	Randomizing B: ray-tracing
	Randomizing B: ray-tracing, process
	Slide Number 28
	Example: magnetic field in CNGS
	Example : the magfld.f routine
	Slide Number 31
	magfld: results
	usrglo.f :example
	magfld.f multipoles
	magfld.f multipoles – quadrupoles
	magfld.f multipoles - sextupole

