An introduction to PET activity simulations and detector study

FLUKA Advanced Course and Workshop 18-22 November, NEA, Paris

vferrero@to.infn.it

Why PET activity?

Proton treatment

$$-\frac{dE}{dx} = 4\pi N_A r_e^2 m_e c^2 \rho \frac{Z_t}{A_t} \frac{Z_p^2}{\beta^2} \left[ln(\frac{2m_e c^2 \beta^2 \gamma^2}{I}) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z_t} \right]$$

Dose uncertainties:

- Patient setup
- Anatomical changes
- Dose calculation

→ need of particle range verification

Why PET activity?

Particle range verification:

- Nuclear de-excitation → Gamma prompt
- Fragmentation → Charged particles
- β^+ isotopes \rightarrow 511 keV annihilation photons

Why PET activity?

Particle range verification:

- Nuclear de-excitation → Gamma prompt
- Fragmentation → Charged particles
- β^+ isotopes \rightarrow 511 keV annihilation photons

The INSIDE project

Short decay time: **online measurement** to minimize loss of signal and distribution washout (in-beam PET)

Enghardt W. et al. Radiother Oncol. 2014, 73.2:S96-98

We measure the activity, not the dose (indirect comparison) \rightarrow **need of an activity simulation**

PET distribution: basic concepts

eg. treatment plan delivered on a PMMA phantom

E=83-150 MeV, protons

Phantoms studies published in: V. Ferrero JINST 12(3), 2017; V. Ferrero et al, TRPMS 2(6), 2018; F. Pennazio et al., PMB 63, 2018.

The INSIDE PET simulation

Scanner geometry Target model Beam line characteristics Treatment plan information β⁺ isotopes characteristics

Two-step simulation

STEP 1 beam simulation	Time-tagged activity scoring	STEP 2 PET simulation	Image reconstruction
A fraction of primary hadrons is simulated (e.g. 1/100)	Isotope production map	All positrons are simulated (x100)	Same analysis chain as real data
The temporal and spatial structure of beam are simulate	of the ed	Isotopes decay is simulated	
ATEN			E

The INSIDE PET simulation: step1

CNAO/INSIDE user ROUTINES (MGDRAW, SOURCE)

- Description of the CNAO beam line (particle, beam size)
- Description of the treatment (number of slices, energy, total particles/treatment, particle/spot, spot coordinates, delivery time)

The treatment information are directly passed through the user ROUTINES

1/100 wrt total primaries is simulated for computational time issues (\rightarrow simuation is biased)

OUTPUT: fragmentation processes that result in the production of β + isotopes are scored in the target (spatial and time coord)

Other process (neutron, prompt photons, charged fragments) are not taken into account

Exp data

The INSIDE PET simulation: step2

CNAO/INSIDE user ROUTINES (MGDRAW, SOURCE, USRINI)

- Step1 output (i.e., isotope map distribution) as generator
- All initial statistics is accounted for (step1 output is read 100 times if 1/100 statistics was run in step1)
- Extraction of decay events over characteristics isotopes curve
- Simulation of annihilation events and scoring of 511 keV photons on the detector elements

OUTPUT: file with single detected events

Simulated data is post-processed considering the detector experimental performances and a coincidence data filtering algorithm is applied

Coincidence event rate

MC truth (step1 sim)

PET activity simulation

	Field 1			
	data 1	sim 1	data 2	sim 2
Rising edge (mm)	44.5 ± 0.8	43.9 ± 0.6	44.5 ± 0.9	43.9 ± 0.6
Falling edge (mm)	97.2 ± 0.9	96.6 ± 0.9	97.7 ± 0.9	96.8 ± 0.9
Range (mm)	52.7 ± 1.2	52.7 ± 1.1	53.2 ± 1.3	52.9 ± 1.1

	Field 2			
	data 1	sim 1	data 2	sim 2
Rising edge (mm)	44.5 ± 0.9	43.9 ± 0.6	44.4 ± 0.9	43.9 ± 0.6
Falling edge (mm)	128.8 ± 0.8	123.4 ± 0.9	123.3 ± 0.9	123.9 ± 0.9
Range (mm)	79.3 ± 1.2	79.5 ± 1.1	78.9 ± 1.3	80.0 ± 1.1

18 z [cm]

PET activity simulation

	data 1	sim 1	data 2	sim 2	
Rising edge (mm)	44.5 ± 0.8	43.9 ± 0.6	44.5 ± 0.9	43.9 ± 0.6	
Falling edge (mm)	97.2 ± 0.9	96.6 ± 0.9	97.7 ± 0.9	96.8 ± 0.9	
Range (mm)	52.7 ± 1.2	52.7 ± 1.1	53.2 ± 1.3	52.9 ± 1.1	
aroomont					

Agreement:

- within 0.5 mm between experimental measurements
- within 1 mm between experimental and simulated data

The first in-vivo monitoring

The first in-vivo acquisition on Dec. 2015 showed the feasibility of using the INSIDE in-beam PET for range verification

Carcinoma of the lacrimal gland 3.7 10¹⁰ protons [66.3, 144.4] MeV/u 30 fractions, 2.2 GyE Treatment time: 240 s

In-beam PET: no washout model is included

Results published in: V. Ferrero et al., Sci Rep 8.1, 2018; E.Fiorina, V. Ferrero, et al. Phys Med 51, 2018.

The first in-vivo monitoring

The first in-vivo acquisition on Dec. 2015 showed the feasibility of using the INSIDE in-beam PET for range verification

Carcinoma of the lacrimal gland 3.7 10¹⁰ protons [66.3, 144.4] MeV/u 30 fractions, 2.2 GyE Treatment time: 240 s

Agreement within 3 mm before the treatment end, FWHM ≤ 17.6 mm (data vs sim), 12.8 mm (data vs data)

Results published in: V. Ferrero et al., Sci Rep 8.1, 2018; E.Fiorina, V. Ferrero, et al. Phys Med 51, 2018.

The first in-vivo monitoring

The first in-vivo acquisition on Dec. 2015 showed the feasibility of using the INSIDE in-beam PET for range verification

[66.3, 144.4] MeV/u 30 fractions, 2.2 GyE Treatment time: 240 s Agreement within

Carcinoma of the

lacrimal gland 3.7 10¹⁰ protons

Agreement within 3 mm before the treatment end, FWHM ≤ 17.6 mm (data vs sim), 12.8 mm (data vs data)

> **V** How significant are these values?

Results published in: V. Ferrero et al., Sci Rep 8.1, 2018; E.Fiorina, V. Ferrero, et al. Phys Med 51, 2018.

Currently installed @ CNAO, Italy

The INSIDE clinical trial

- Cohort of 20+20 patients
- Proton and carbon ion beams
- Different pathologies
- Study and optimize the INSIDE performances
- Find the clinically relevant tolerances
- Evaluate the benefits of the INSIDE system wrt the clinical routine

The INSIDE clinical trial started on Jul 19. Patients treated with both proton and carbon ion beams are being monitored

ClinicalTrials.gov ID: NCT03662373

Squamocellular rhinopharynx carcinoma

Patient treated with 2 fields (0° and 270° IEC) 27 sessions, D_{tot} =54 Gy

Planned dose

MC truth

MC truth

step1

step2

Squamocellular rhinopharynx carcinoma

Patient treated with 2 fields (0° and 270° IEC)

27 sessions, D_{tot} =54 Gy

Field 1: 0° IEC, no RS

ClinicalTrials.gov ID: NCT03662373

17

Planned dose

MC truth

step1

step2

Squamocellular rhinopharynx carcinoma

Patient treated with 2 fields (0° and 270° IEC)

27 sessions, D_{tot} =54 Gy

Field 2: 270° IEC, RS

ClinicalTrials.gov ID: NCT03662373

18

Field 1: 0° IEC, no RS

lmage comparison	Range difference	Range difference FWHM	Pearson correlation coefficient
frac 16 vs 17	-0.68 mm	8.0 mm	0.96
frac 16 vs 22	0.83 mm	8.0 mm	0.95
frac 16 vs 23	-2 mm	9.6 mm	0.96
frac 16 vs 24	0.05 mm	11.2 mm	0.96
frac 16 vs 25	-0.62 mm	8.0 mm	0.95
frac 16 vs 27	-0.75 mm	8.0 mm	0.95

Image comparison	Range difference	Range difference FWHM	Pearson correlation coefficient
sim vs 16	-0.94 mm	6.4 mm	0.83
sim vs 17	-0.88 mm	8.0 mm	0.83
sim vs 22	-1.45 mm	9.6 mm	0.77
sim vs 23	-0.99 mm	6.4 mm	0.79
sim vs 24	-0.92 mm	9.6 mm	0.80
sim vs 25	-1.26 mm	4.8 mm	0.82
sim vs 27	-1.49 mm	11.2 mm	0.82

frac 16

frac 17

sim

Analysis described in: V. Ferrero et al. TRMPS 2(6), 2018; E.Fiorina, V. Ferrero, et al. Phys Med 51, 2018.

A Gantry and Apparatus for Focusing Beams of Charged Particles. L. Bottura, European Patent Application EP 18173426.0, May 2018

Static gantry: beam delivery at discrete angles without magnet rotation \rightarrow steady-state configuration, superconducting magnets \rightarrow reduction of size, weight and costs

Test geometry:

- 8 coils
- 100 cm bore

Test geometry:

- 8 PET detector blocks
- 3 modules for each block (5x15 cm²)
- 16x16 crystals (3.2 mm pitch) for each module

FLUKA simulation: 4.8x4.8x4.8 cm³ activity cube

 $[\]rightarrow$ strong image artefacts!

Test geometry:

- 8 coils
- 100 cm bore

Test geometry:

- 8 PET detector blocks
- 3 modules for each block (5x15 cm²)
- 16x16 crystals (3.2 mm pitch) for each module

FLUKA simulation: 1 cm³ activity cube

Repetition of the same detector block: LATTICE, ROT-DEFI

Conclusions

The INSIDE clinical trial: understand detector limits, sensitivity, impact on physicians ...with the aid of FLUKA

GaToroid: study and optimization for an integrated gantry geometry ...with the aid of FLUKA