PET imaging for proton therapy: analysis of in-beam time profiles

Aafke Kraan, INFN Pisa

On behalf of the DOPET and INSIDE experiments

Outline

- **Introduction to proton therapy**
- **Positron Emission Tomography (PET)**
- ^l **DoPET detector & simulation**
- ^l **Results**
- ^l **Outlook**
- ^l **Conclusions**

Outline

- **.** Introduction to proton therapy
- **Positron Emission Tomography (PET)**
- ^l **DoPET detector & simulation**
- ^l **Results**
- ^l **Outlook**
- ^l **Conclusions**

Introduction

Charged particles have highly advantageous dose profile compared to photons!

Introduction

One of the main disadvantages of charged particle therapy is the sensitivity to uncertainties:

- Steep dose gradients
- Matching of many individual pencil-beams **protons photons**

- **Anatomical changes:** (internal organ motion, changes in air cavities, tumour regression, weight loss
- **Proton range** (calibration CT apparatus, proton stopping power, implants)
- **Patient inter-fractional setup** (daily positioning on the couch)

If we miss the target (for whatever reason) we can cause a damage… (much more serious than for photons)

It would be good, if we could monitor the range of the protons!

Introduction

What happens in the human body when a proton of energy range 50-250 MeV hits the human body?

What kind of fragments?

- Many different types... ...
- Most relevant here:
	- β⁺ **emitting nuclei like 15O,11C, 10C, etc.**

 \rightarrow can be detected with a PET system

15O, 15N, 14N, 13C, 12C, 11C, 10B, 8Be, 6Li, 4Be, 4He, 3He, 3H, 2H, 1H, …

See for instance: Tommasino & Durante, Cancers 2015,7

Positron Emission Tomography

• $β$ ⁺ emitters can be detected with PET (Positron-Emission-Tomography)

Method first explored by Enghardt, Parodi, Nishio, Iseki, Crespo, Fiedler, etc…

- PET β ⁺ activity is (indirectly) related to proton range and dose
- Can compare MC activity prediction with PET data (or data with data)

What's usually done

Parodi, IJROPB, 2007

Goal of this study

- Extract **fractions of 15O, 11C and 10C in phantoms in in-beam PET data**
- Can PET decay-rates give an indication about elements in the phantom?
- Possibly useful for:
	- **Validation of the nuclear physics models in FLUKA**
	- To investigate biological washout models + perfusion in patients
	- To calculate the elemental composition of the irradiated tissue (detect changes of oxygenation in tumors?)
- Few words about **INSIDE** project

- **Introduction: why hadron therapy?**
- **Positron Emission Tomography (PET)**
- **DoPET detector & simulation**
- ^l **Results**
- ^l **Outlook**
- ^l **Conclusions**

PET system

PET system

- \checkmark Two heads, 38 cm apart
- \checkmark Each plane 16 x 16 cm²
- \checkmark Each head contains 9 modules
- \checkmark LYSO crystal scintillator
- \checkmark Position sensitive photomultipliers
- \checkmark Dedicated fast front-end electronics
- \checkmark DAQ system, 5 ns coincidence window
- \checkmark Reconstruction algorithm: MLEM

See for instance: Sportelli G, et al. Phys Med Biol (2014) 59(1):43–60. doi: 10.1088/0031-9155/59/1/43 V.Rosso et al, JINST 12, 2017

Data acquisition

Phantoms

ü **Phantoms:** PMMA, PE and Water.

Irradiations:

- \checkmark Phantoms were irradiated for 5 s with single pencil beams (10¹⁰) protons, FWHM=10.7 mm) at the **Cyclotron Centre of the Bronowice** proton therapy centre in Krakow, Poland.
- \times 130 MeV protons

Acquisitions:

 \checkmark 5 minutes after data taking

FLUKA Simulation & analysis

Simulation

- \checkmark Used **FLUKA** to simulate all data acquisitions and PET system Thesis by A. Topi, 2018
- \checkmark Mgdraw.f written to score position and times of beta+ decays
- \checkmark Detector hits & time stored
- \checkmark In-house reconstruction

S. Muraro, NIMA936, 2019

 \checkmark Beam-delivery simulated

Analysis:

- \checkmark The activity distributions in **space** $\hat{\to}$ shape and absolute height of 1-D zprofiles (beam-axis).
- \checkmark The activity distributions in time, i.e., the decay rates $\hat{\to}$ exponential fit to estimate the contribution of ¹⁵O (t_{1/2}=2 min), ¹¹C (t_{1/2}=20 min) and ¹⁰C (t_{1/2}=19 s) in the phantoms
- \rightarrow Compare data with MC

- **Introduction: why hadron therapy?**
- **Positron Emission Tomography (PET)**
- ^l **DoPET detector & simulation**
- ^l **Results**
- ^l **Outlook**
- ^l **Conclusions**

A good agreement between FLUKA and data is seen!.

1-D decay rate for 4 different phantoms fitted with the contributions from 15O, 11C, and 10C

Observations

- PE, PMMA and Zebra: at small times: data is somewhat higher than FLUKA...
- A good agreement between FLUKA and data is seen!.

Fitted values were used to calculate the relative fractions of $15O$, $11C$, and $10C$ in the time interval from 8 to 300 s.

• Overall agreement good!

 10^C is somewhat higher in data than in MC

Seen also for instance in P. Cambraia Lopes, J. Bauer, A. Salomon, et. al., First in situ TOF-PET study using digital photon counters for proton range verification, Phys. Med. Biol. 61 (2016) 6203

More data needed!

By dividing the phantom into different slices (2 mm in z, 20 mm in x and y) and repeating the fit in each slice, it is possible to approximately map the amount of ¹⁵O, ¹¹C and ¹⁰C. In Fig. 5 we show a 1-D map for ¹⁵O for the Zebra phantom data.

From the time fit: number of β ⁺ decays per slice from ¹⁵O, ¹¹C, ¹⁰C as a function of z in a time-interval from 8 to 300 s, for the Zebra phantom.

INSIDE

INnovative **S**olutions for **I**n-beam **D**osim**E**try in Hadrontherapy

- In-beam PET detector installed at CNAO (Centro Nazionale di Adroterapia Oncologica)
- * Online-PET (during treatment) in between the spills of the synchroton
- Simulation framework with FLUKA F. Pennazio, E. Fiorina, V. Ferrero, et al
- * First clinical test @CNAO, 1-2 Dec. 2016
- **Bi-modal:** apart from PET, also charged particle detector!

See G. Bisogni et. al., J.Medical Imaging 01005, 2017

INSIDE

INSIDE

Data 12/01

Data 12/02

Simulation 12/01

Elisa Fiorina et al., INFN Torino and CNAO, Physica Medica 51 2018

Simulation challenges

Large number of protons has to be simulated

For 1 liter tumor 2 Gy (RBE): $> 10^{11}$ protons needed…

In practise, simulate a fraction of the plan

Setting up simulation framework to be able to quickly simulate patient treatments (Torino, Pisa)

Conclusions

- **Fractions** o**f the various PET isotopes could be accurately monitored in space and time.**
- Extracted fractions of ${}^{15}O$, ${}^{11}C$ and ${}^{10}C$ for various phantoms in time intervals immediately after irradiation until 5 minutes after irradiation.
- Based on 10¹⁰ protons, i.e., only a small fraction of what's typically delivered in an entire treatment $({\sim}10^{11} \text{ protons/Gy/liter})$.
- With a simple voxel-by-voxel fit-approach the contributions of the various isotopes could be localized.
- Example of simple experimental setup, useful for validation of FLUKA hadronic models
- New studies to be done with DoPET at CATANA
- **INSIDE:** clinical trial ongoing to evaluate the use of online-PET \rightarrow lot's of data to be analyzed

Thanks for your attention

Nr protons vs tumor volume

$$
N_{protons} \, per \, Gy(RBE)[\times 10^9] \simeq 0.5[V_t + (4\pi)^{\frac{1}{3}}V_t^{\frac{2}{3}} 2\sigma]^{0.8}
$$