

Exercise - Geometry

Advanced FLUKA Course

Go

a

Goal

Build a simple model for a *warm dipole*

- Tips & Suggestions
 - Use "basic.inp" as template
 - Put the model of the dipole directly in its final position along the line;
 - Use the 'dipole_*' 'technical drawings' you are given, superimposed to the geometry (create dedicated layers in the Geometry Editor);
 - Surround the model with a 'finite' body as bounding box, but use 'infinite' bodies as much as possible for the inside;
 - The vacuum region inside the dipole will be set as magnetic at a later stage

b)

Goal

Build the geometry of a *warm* quadrupole

• Tips & Suggestions

- Surround the model with a 'finite' body as bounding box, but use 'infinite' bodies as much as possible for the inside;
- The quadrupole you are going to model is a Focussing one (i.e. it focuses the beam on the horizontal plane), featured by a beam pipe wider than higher;
- Centre the model around (0,0,z), in order to simplify the routine for magnetic fields; The axis of the quad is along Z.
- The vacuum region inside the quadrupole will be set as magnetic at a later stage;

• Goal

Build the geometry of a small accelerator line

• Requirements

- The accelerator line is composed by a dipole and four quadrupoles see 'geometry_*' 'technical drawing';
- The beam will go through the dipole and the four quadrupoles: choose the most suitable reference system!
- The sequence of quadrupoles is *Defocussing–Focussing Focussing*-*Defocussing*; the Defocussing quadrupole can be obtained inserting a rotation by 90 degrees about the longitudinal axis;
- Tips & Suggestions
 - Re-use the elements you have modelled so far; in particular:
 - put the model of the quadrupole in a separated portion of the geometry, fully surrounded by **BLCKHOLE**, through a \$start_translat directive;

c (II)

Tips & Suggestions (continued)

use the lattice capability of Fluka in order to create the four replica;

the magnetic field in the quadrupole will be set at a later stage;

• Recipe for lattices:

For each replica of the quadrupole:

- Clone the bounding box of the quadrupole model, including the \$start_translat directive (remember to assign a new and unique name!);
- 2. Build the correct sequence of transformations, i.e. the one moving particles from the replica to the model;
- 3. Assign the transformation to the body through a **\$start_transform** directive, but in the opposite direction remember the '-' sign;
- 4. Create the region and the **LATTICE** card (remember to assign new and unique names!);

d)

Goal

shoot the beam through the entire beam line, and check the evolution of the beam position/profile in selected points;

• Requirements

- Beam settings:
 - 1 GeV/c protons , shot upstream of the dipole;
 - Gaussian beam: $\sigma_x = \sigma_y = 1$ mm, with no divergence;
- Magnetic settings: dipole field on (ASSIGNMA and MGNFIELD cards), so that particles follow the curvature of the pipe:

 $B[T] = p[GeV/c] / (0.2998 * \rho[m])$

- insert three USRBIN scorings of BEAMPART fluence:
 - 1. upstream of the dipole (but downstream of the position where the beam is generated);
 - 2. downstream of the dipole;
 - 3. downstream of the quadrupoles 200cm downstream of the last one;