
Containers for ND280 software
(and others use cases)

Mathieu Guigue

Jennifer-II Computing Workshop — December 12th 2019

Jennifer-II Computing Workshop — December 12th 2019

Conflicting dependencies between projects

Development on networked hosts

Development by multiple agents/groups

Manage and deploy software on heterogeneous systems

Deploy many applications (slow control, DAQ, web interface…)

2

Nowadays software issues

My laptop

c++11 c++03 python>=3 python==2.7.4 cmake>=3.10 cmake<=3.8 root==5.34 root>=6.13 …

My analysis My scripts My slow
control/DAQ

Jennifer-II Computing Workshop — December 12th 2019

“Containers are a method of operating system virtualization that allow you to run
an application and its dependencies in resource-isolated processes.”

https://aws.amazon.com/containers/

What is it good for?

 - uniform environment (developers on Mac/Ubuntu, cluster on Centos/SLX)*

 - reproducible installation and code testing

 - processes isolation

 - controlled networking capabilities

 - manage dependencies while isolating package code

 - facilitate software packaging and sharing

 - provide control over resource usage and dynamic resource allocation

 Singularity — Docker→
3

Moving to containerized code

https://aws.amazon.com/containers/

Jennifer-II Computing Workshop — December 12th 2019

Containers built in layers

 Starting from a base/OS image

Each layer contains a piece of software

 Depth related to update frequency

“Cake recipe” given by Dockerfile

4

“Layer cake” approach

My laptop

…

https://openliberty.io/

Container engine

Container 1

c++03, cmake3.10,
root5.34

My analysis

Container 2

c++11, python3.4,
cmake3.10, root6.18

My scripts

Container 3

c++11, python 2.7.4,
cmake3.7, root5.34

My slow control/DAQ

https://openliberty.io/
https://openliberty.io/blog/2018/06/29/optimizing-spring-boot-apps-for-docker.html

Jennifer-II Computing Workshop — December 12th 2019

Continuous Integration/Continuous Deployment:
Pushed code changes tested (building of containers and tests)

build/tests successful before merge

Once merged, automated image build containing latest “stable” code

Trigger other actions (build/tests of dependent packages)

Docker provides uniform environment

Intensive usage in software industry  
and fundamental physics experiments  

→

→

5

Nowadays usage of containers

Jennifer-II Computing Workshop — December 12th 2019

Continuous Integration/Continuous Deployment

Job environment and job submission:
Heterogeneous clusters (various OS, installed libraries…)

Potentially strong constraints on environment set by software

Use of containers to run jobs on cluster

Dirac client installation and configuration can be messy

Provide maintained job submission container (e.g. Dirac client)

→

→

6

Nowadays usage of containers

Jennifer-II Computing Workshop — December 12th 2019

Continuous Integration/Continuous Deployment

Job environment and job submission

DAQ/slow control software testing and deployment:
Multiple identical deployed services

Run connected containerized code on host via docker-compose

Scalability and control using Kubernetes

Impact of cascading failures & recovery, network delay…

Dynamic service discovery

→
→

7

Nowadays usage of containers

https://kubernetes.io/

Jennifer-II Computing Workshop — December 12th 2019

Basically every experiment e.g. ATLAS

One image per package

Used for development, testing, CI

One image for entire software stack (simulation, analysis)

Nightly builds of every package and stack

Integrated in most of Git frameworks e.g. Gitlab, Github

8

Continuous Integration elsewhere

Jennifer-II Computing Workshop — December 12th 2019

PNNL (Richland - USA)*

Job environment
 Conversion of software stack image to Singularity image**

 Upload image on CVMFS

 Job spin container up and run commands***

Job submission
 Image with Dirac client**** and specific configuration

 Job submission and data retrieval from File Catalog

 Sharing with host via docker-compose plug-and-play!→

9

Jobs elsewhere

*** Singularity container support: https://github.com/DIRACGrid/DIRAC/pull/3476
**** An example: https://github.com/mariojmdavid/docker-dirac

** Conversion from docker to singularity maintained by Singularity people: https://github.com/singularityhub/docker2singularity
* Poster

https://github.com/DIRACGrid/DIRAC/pull/3476
https://github.com/mariojmdavid/docker-dirac
https://github.com/singularityhub/docker2singularity
https://indico.cern.ch/event/773049/contributions/3473364/attachments/1935956/3208159/P8_Computing_CHEP2019_A0.pdf

Jennifer-II Computing Workshop — December 12th 2019

Project 8 - ADMX (Seattle), Memphyno (France):

Software testing
 Experimental room not always accessible to developers
 SC/DAQ software in separate images

 Experiment-like environment for development/debugging

Software deployment
 Containers management by “orchestrator” (Kubernetes)

 Number of replicas configurable

 Container failure recovery

 Management via API and browser

 Successfully deployed on these experiments!

10

DAQ/slow control elsewhere

https://kubernetes.io/

Jennifer-II Computing Workshop — December 12th 2019

Moving to Gitlab for version control and transition to CMake

 See Alex’s presentation

Applications of containerization for T2K software:
 - Enable local development environment*

 - Continuous Integration via Gitlab*

 - Jobs execution across heterogeneous clusters**

 - DAQ and slow control in containers***

11

Applications to T2K software

*today
**”tomorrow”
***maybe… one day?

Jennifer-II Computing Workshop — December 12th 2019

(1) developer testing

 build/test only (if possible) the relevant package

(2) production testing

 build/test several packages at once (using
master packages)

(3) production deployment

 build/test all packages at once (using
nd280SoftwareMaster)

For each level:

 - one Dockerfile

 - one image (reusing layers produced elsewhere)

 (- one CI configuration file)

→

→

→

12

Containerizing T2K analysis and simulation software

Jennifer-II Computing Workshop — December 12th 2019 13

Executing a layered approach with ND280 software

Base image

Centos:7 (or other)

nd280SoftwarePilot

nd280SoftwarePolicy

nd280SoftwareControl

“Individual packages”

MySQL

“other Master”

CERNLIBGSLROOT

Geant4 NEUT

SoftwareMaster
Testing purpose only

Needed for production test

externalsMaster

1. From OS image, build system dependencies (one image per OS)

2. Install software installation scripts and CMake logic

3. Install external packages (ROOT, GSL, Geant4…)

 i. Test individual package installation using CI

 ii. Test all packages installation using “externalsMaster”

 iii. Build externalsMaster image as base image for other packages

4. Same for individual packages

5. Build software stack using
softwareMaster

 i. Produce image for high-level software
tests (small simulations), users and jobs

Work in progress: currently debugging some off-road installation 
procedures

Jennifer-II Computing Workshop — December 12th 2019

New experiment, new possibilities!

Far detector DAQ model very different from ND280

 ToolDAQFramework as DAQ system

 Decentralized system communicating through network

 Multiple processes to be controlled (online triggers, event builders, SC…)

 Need for crash recovery

 A lot of components to develop and test

Containers could have very positive impact on testing and deployment

Kubernetes as “orchestrator”…?

Developing expertise within Jennifer-II would be highly beneficial!→
14

Applications to HK

https://github.com/ToolDAQ/ToolDAQFramework

Jennifer-II Computing Workshop — December 12th 2019

Containers are widely used in software industry

Useful features and properties for small and large-scale experiments

 Isolated development environment

 Uniform environment regardless of hosts heterogeneity

 Resources and network control

 Useable as Continuous Integration executor

Work-in-progress in the T2K collaboration

 Containerization of ND280 analysis and simulation software

 Continuous Integration in Gitlab

Potential other usages

 As part of job submission process (base image, Dirac client…)

 Slow control and DAQ testing and deployment

Jennifer-II is a great place  
to exchange ideas and develop common frameworks!

15

Conclusions

Jennifer-II Computing Workshop — December 12th 2019 16

Backup

Jennifer-II Computing Workshop — December 12th 2019

Docker: open-source project to create, deploy and run applications via
containers

Docker Inc.:

 - provides applications to run on Mac/Linux/Windows

 - provides free hosting and automatic builds of images

Container: self-container application easily deployable in an environment

Container image: compressed container used to create functioning
containers

Docker engine: back-end of Docker software running on computing
element (laptop, server…) and managing containers

Docker client: interface that communicates with the Docker engine

17

Docker terminology

Jennifer-II Computing Workshop — December 12th 2019 18

Difference between containers and VM

Container runs on Linux as a process and share host machine kernel

direct access to host resources

VM runs as “independent” guest operating system

virtual access to the host resources

VM need more resources than containers (CPU, memory, disk space)

→

→

→

Jennifer-II Computing Workshop — December 12th 2019

Multiple runner-servers (allowing individual downtime)
 Instance set up at CC-IN2P3 using their runner servers

 Issues between CC-IN2P3 and git.t2k.org (solved 2 weeks ago)

 One runner in Poland

 Could setup dedicated Linux desktop machines at LPNHE (easy!)

What’s next?

 Deploy first version on some key packages

 Define pipelines
 Should a new version of X trigger something? How to release?

 Evaluate actual computing needs (depends on pipeline/users)
 Wait for more finalized version before full-deployment (minimal
version…)

19

CI testing

http://git.t2k.org

Jennifer-II Computing Workshop — December 12th 2019

Starts from a base Docker image

 - contains all needed dependencies (dev tools, cmake3, wget…)

 - defines common location for all packages: /usr/local/t2k/current

 - defines some convenience env. variables

Currently, centos:7 is used, but others/multiple OS are possible

Note:
 If we want several Docker image (depending on OS), could use manifest

 Only framework and master package would need image for each OS

Dockerfile, images… here
→

20

From the beginning… a base image

https://gitlab.com/gitlab-org/gitlab-foss/issues/40197#note_94416667
https://git.t2k.org/nd280/docker/base

Jennifer-II Computing Workshop — December 12th 2019

Several “framework” packages:

 - pilot/nd280SoftwarePilot

 - framework/nd280SoftwarePolicy

 - framework/nd280SoftwareControl

Need to be installed before installing packages (control not actually needed, but good to have
earliest on)

 Need to change install order?

For each, need the CI to build/test/generate Docker image

 Master branch “latest” exists

 Tag “X.Y.Z” exists

 Release branch tagged docker image “X.Y.*_latest”? (useful for debugging)

 Merge request dedicated tagged image? (useful for debugging)

 Any branch dedicated tagged image “feature_XXX”?

→
→

→
→

→

21

Framework images

https://git.t2k.org/nd280/pilot/nd280SoftwarePilot
https://git.t2k.org/nd280/framework/nd280SoftwarePolicy
https://git.t2k.org/nd280/framework/nd280SoftwareControl

Jennifer-II Computing Workshop — December 12th 2019

Based on nd280SoftwareControl image

Contains GSL, MySQL, ROOT, GEANT4, CERNLIB, CLHEP, NEUT

Used as base image (FROM statement) of all other packages

Using find-dependencies pilot script for getting packages/version

 Careful with what username/password is used…

Libraries/data rather large

 Dominated by Geant4, CERNLIB and ROOT

 Post-installation cleanup help reducing size

 Need cleaning NEUT installation (misplaced header files…)

22

externalsMaster

Jennifer-II Computing Workshop — December 12th 2019

externalsMaster as base image

Currently copy files from already existing Docker images

ex: ENV OAGEOMINFO_VERSION 5.9
 ENV OAGEOMINFO_PATH $COMMON_BUILD_PREFIX/oaGeomInfo_${OAGEOMINFO_VERSION}
 COPY --from=git.t2k.org:8088/nd280/base/oageominfo:5.9 ${OAGEOMINFO_PATH} ${OAGEOMINFO_PATH}

 Avoid rebuilding code

 But manually updating version in Dockerfiles needed

Will use of minimal version feature by Alex

 ex: ND280_USE(oaEvent 8.16+)
 Versions needed for building code in XXXND280_USE.cmake file

 Easier maintenance of packages dependencies

See backup slides for more details about progress
23

Building packages

Jennifer-II Computing Workshop — December 12th 2019

.job_template: &job_definition # Hidden key that defines an anchor named 'job_definition'
 image: docker:latest
 stage: build
 services:
 - docker:dind
 before_script:
 - docker login -u "$CI_REGISTRY_USER" -p "$CI_REGISTRY_PASSWORD" $CI_REGISTRY

docker-build-master:
 <<: *job_definition
 script:
 - docker build --pull --build-arg GIT_T2K_TOKEN=$CI_REGISTRY_PASSWORD --build-arg GIT_T2K_USERNAME=$CI_REGISTRY_USER -t
"$CI_REGISTRY_IMAGE:latest" .
 - docker push "$CI_REGISTRY_IMAGE:latest"
 only:
 - master

docker-build-tags:
 <<: *job_definition
 script:
 - docker build --pull --build-arg GIT_T2K_TOKEN=$CI_REGISTRY_PASSWORD --build-arg GIT_T2K_USERNAME=$CI_REGISTRY_USER -t
"$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG" .
 - docker push "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"
 only:
 - tags

docker-build-mr:
 <<: *job_definition
 script:
 - docker build --pull --build-arg GIT_T2K_TOKEN=$CI_REGISTRY_PASSWORD --build-arg GIT_T2K_USERNAME=$CI_REGISTRY_USER -t
"$CI_REGISTRY_IMAGE" .
 only:
 - merge_requests

24

Gitlab-ci for nd280SoftwarePilot

Jennifer-II Computing Workshop — December 12th 2019 25

Typical content of a Dockerfile
FROM git.t2k.org:8088/nd280/master-packages/externalsmaster:5.3.5.0 as pre_oaEvent

ENV OAEVENT_VERSION 8.15
ENV TESTBASE_VERSION 1.17
ENV OAEVENT_PATH $COMMON_BUILD_PREFIX/oaEvent_${OAEVENT_VERSION}
ENV TESTBASE_PATH $COMMON_BUILD_PREFIX/testBase_${TESTBASE_VERSION}

COPY --from=git.t2k.org:8088/nd280_old/base/testbase:1.17 ${TESTBASE_PATH} ${TESTBASE_PATH}

FROM pre_oaEvent as interm_oaEvent

COPY . ${OAEVENT_PATH}

RUN mkdir ${OAEVENT_PATH}/${LINUX_INSTALL_FOLDER}
WORKDIR ${OAEVENT_PATH}/${LINUX_INSTALL_FOLDER}
ENV ND280_NJOBS 3
RUN source $COMMON_BUILD_PREFIX/setup.sh &&\
 source $ROOT_PATH/$LINUX_INSTALL_FOLDER/bin/thisroot.sh &&\
 cmake ../cmake &&\
 make -j3

FROM pre_oaEvent

COPY --from=interm_oaEvent $OAEVENT_PATH/$LINUX_INSTALL_FOLDER/*.sh $OAEVENT_PATH/
$LINUX_INSTALL_FOLDER/
...

Base image (all external dependencies)

Package and dependencies versions

Path definitions

Dependencies copy

Package installation

Clean container creation  
(no intermediate file)

Jennifer-II Computing Workshop — December 12th 2019

Important for CI

Base image (Centos7) is 1.59GB (unnecessary dependencies?)

Installed externals dependencies:

275M	 /usr/local/t2k/current/NEUT_5.3.5.00

160M	 /usr/local/t2k/current/MYSQL_5.6.20.01

36M	/usr/local/t2k/current/GSL_1.15.0.00

773M	 /usr/local/t2k/current/ROOT_5.34.34.00

90M	/usr/local/t2k/current/CLHEP_2.1.1.0

469M	 /usr/local/t2k/current/CERNLIB_2005.8

560K	/usr/local/t2k/current/externalsMaster_1.74

880M	 /usr/local/t2k/current/Geant4_10.1.03.00

3.3M	/usr/local/t2k/current/nd280SoftwarePolicy_v3.1.2

2.8M	/usr/local/t2k/current/nd280SoftwarePilot

2.7G	/usr/local/t2k/current

Last layer is 2.6GB

Not save intermediate files (CMakeCache, objects…) from installation

 - Use additional intermediate folder for these files

 - “Only” libraries/exe/headers installed in output folder (Linux-…)

 - Doable for C++ dependencies, more complex for CERNLIB/NEUT

 - Need changes in policy for our packages

Careful with using cpp files as headers (need copy)

 - Only headers should be copied over

→

26

Make Docker images lean

Jennifer-II Computing Workshop — December 12th 2019 27

Packages status
Package name Docker status Docker-compose Gitlab-CI

base Final None None
nd280SoftwarePilot Final None Final
nd280SoftwarePolicy Final None Final
nd280SoftwareControl Final None Final
externalsMaster Final None Final

testBase Final None Final
oaEvent Working None Final

oaGeomInfo Working None None
oaChanInfo Working None None
oaUtility Working None None

oaRuntimeParams Working None None
oaMagnetCalib Working None None
oaOfflineDatabase Working None None
oaRawEvent Working None None
oaCalibTables Working None None

oaSlowcontrolDatabase Working None None
detResponseSim Working Final None

neutGeant4CascadeInterface Final None Final
nd280Geant4Sim None None None

