
ND280 software -
 emulating CMT with CMAKE

● Alex Finch

10/12/19 Alex Finch 2

ND280 Software

Set up in 2006

~70 packages

Split into 6 master sets for convenience

Controlled by CMT

Version control with CVS

An “nd280 release” is a defined set of
versions of each package.

10/12/19 Alex Finch 3

CMT

“Makefile generator”

Written by particle physicist

Only used in HEP.

10/12/19 Alex Finch 4

CMT ...

Single file “requirements” defines all the information
CMT needs:

Packages this one depends on, using versioning
(v<major id>r<minor id>p<patch id>)

Executables that need building

Non standard things that need doing

Non standard compile/link commands

Knows about CVS

Creates makefiles

No longer actively maintained

10/12/19 Alex Finch 5

CMAKE

Industry standard “makefile generator” for building
software.

Highly configurable

Lots of documentation

Actively developed

10/12/19 Alex Finch 6

GIT

Industry standard version control system

Need I say more?

10/12/19 Alex Finch 7

If it Ain’t Broke Don’t Fix It.

Why go to the bother of changing from CMT to
CMAKE/GIT?

ND280 is being upgraded.

Software needs to change to match. GIT is better for
branching etc. which will be a big advantage.

Expect to run nd280 software for many more years.

New students/post docs are often already familiar with
git and cmake.

Active development/support for CMAKE/GFIT
. Lots of documentation - just google it,
or even buy a book!

10/12/19 Alex Finch 8

Converting from CMT/CVS to
CMAKE/GIT

Tried to keep close the to the CMT structure/philosophy.

CMAKE does not know about GIT natively

Need to provide the “glue” between GIT and CMAKE in a
separate “pilot” package.

Took advantage of relatively simple structure of most nd280
packages:

Package X builds a library called libX.so from a bunch of
C++ source files in the src directory. It may also build some
executables from a main routine in the app directory.

It is documented with doxygen.

Take advantage of the fact that all “external” packages can
now be built with CMAKE.

10/12/19 Alex Finch 9

A typical ND280
package in CMAKE

CMakeLists.txt is equivalent of CMT requirements file:

CMakeLists.txt for <package> package. It creates a library ...

cmake_minimum_required(VERSION 3.9 FATAL_ERROR)

find_package(nd280SoftwarePolicy 3.1)

if(NOT nd280SoftwarePolicy_FOUND)
 message(FATAL_ERROR " nd280SoftwarePolicy not found - abort ")
endif()

include(<package>PackageVersion.cmake)

ND280_PROJECT(<package> ${PACKAGE_VERSION})

include(<package>ND280_USE.cmake)

ND280_STANDARD_LIBRARY()

ND280_EXECUTABLE(ExecutableName MainRoutine.cxx)

ND280_END_PROJECT()

Standard cmake

include nd280 specific functions

define the version number of this package

initialise the project

define the dependencies

create a standard shared object library

create an executable

finish of

10/12/19 Alex Finch 10

Supporting files...

<package>PackageVersion.cmake:

Defines the package version number:

set(PACKAGE_VERSION "major.minor.patch")

...

● <package>ND280_USE.cmake:

Defines the packages this one depends on.
Try to define the minimum set necessary.

● List of “use statements”

ND280_USE(oaRawEvent)

● Only “master packages” contain version
numbers,e.g.

 reconMasterND280_USE.cmake

ND280_USE(reconUtils 1.35.1)
ND280_USE(RECPACK 4.17.1)
ND280_USE(recPackRecon 8.53.1)
ND280_USE(sbcatRecon 5.5.1)
ND280_USE(p0dRecon 9.9.1)
ND280_USE(tpcRecon 6.33.1)
ND280_USE(trexRecon 2.35.1)
ND280_USE(fgdRecon 6.9.1)
...

10/12/19 Alex Finch 11

Where the work gets done...

nd280SoftwarePolicy includes a single file
“standardFunctions.cmake” which defines a set of
ND280 specific functions which do the heavy lifting.

10/12/19 Alex Finch 12

Doxygen style
documentation is available ...

10/12/19 Alex Finch 13

ND280_USE

ND280_USE function builds the hierarchy of
packages needed by this one.

Wrapper for cmake function find_package

searches for package by name and version

by convention, in directory called <package>_<version>

If found, runs configuration file, which normally just
includes <package>ND280_USE.cmake which calls
ND280_USE...

10/12/19 Alex Finch 14

Main ND280_ functions

ND280_STANDARD_LIBRARY
Wrapper for add_library

ND280_APPLICATION:
wrapper for add_executable

ND280_END_PROJECT
Creates scripts to build the project and its
dependencies in the right order.
Also generates setup scripts including any package
specific ones.

10/12/19 Alex Finch 15

Building the s/w

cmake ../cmake

../bin/setup.sh

../bin/makeAll.sh

10/12/19 Alex Finch 16

ND280 S/W on GITLab

Package version ->branch + tag

patches -> tag

nd280SoftwarePilot :

 clones packages

 “git checkout” correct version

rename directory to keep
CMAKE happy

10/12/19 Alex Finch 17

Issues with Externals

Use ExternalProject_Add to hand craft each
“External” package

Some external packages, e.g. ROOT, Geant4

Create their own Config files when they are built

But we need them before this (during cmake stage) to
create the hierarchy of packages

Need “placeholder” config files which load the
generated config files if they exist but always satisfy
find_package

10/12/19 Alex Finch 18

Conclusions and
 Future Directions

ND280’s existing software arrangements needed
updating to support the hardware upgrade.

Used industry standard CMAKE + GIT

Emulated CMT’s approach where possible

Succesfully converted after ~1 year’s work.

SInce becoming official rapid development of
software for upgraded detector

Further development work to take advantage of CI
possibilities with GITLab

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

