Data Analysis Tools in Belle II

Bundesministerium für Bildung und Forschung

JENNIFER2 Computing Workshop

Thomas Kuhr

12.12.2019

Belle II Events

- e^+e^- collisions at $\sqrt{s} \approx 10.6 \text{ GeV}$
- Design luminosity 8x10³⁵ cm⁻²s⁻¹ (40x KEKB)

Type of event	Rate [kHz]
Y(4S) → BB	0.8
qq	3.0
ττ	0.7
e ⁺ e ⁻ (γ)	240
e+e-e+e-	32

• O(10) tracks per Y(4S) event

Data Analysis Workflow

- → Signal MC, Data/MC skims
- Reconstruction, (pre-)selection
- Tools like vertex fits, flavor tagging, etc.
- → Ntuples
- Selection optimization
- Corrections / calibrations
- Fit
- Systematics
- → Result

Belle II Analysis Software Framework (basf2)

- Used online and offline
- Dynamic loading of modules
- Data exchange via DataStore
- Relations
- Root I/O
- Parallel processing
- Steering via python
 → meta-frameworks


```
StoreArray<Track> tracks;
for (const Track& track: tracks) {
   const PIDLikelihood* pid =
      track->getRelated<PIDLikelihood>();
}
```


import modularAnalysis as ma
import variables.collections as vc

ma.inputMdst(...)

create Ks -> pi+ pi- list from V0
keep only candidates with 0.4 < M(pipi) < 0.6 GeV
ma.fillParticleList('K_S0:pipi', '0.4 < M < 0.6', path=...)</pre>

reconstruct J/psi -> mu+ mu- decay
keep only candidates with 3.0 < M(mumu) < 3.2 GeV
ma.reconstructDecay('J/psi:mumu -> mu+:loose mu-:loose', '3.0 < M < 3.2', ...)</pre>

reconstruct B0 -> J/psi Ks decay # keep only candidates with 5.2 < M(J/PsiKs) < 5.4 GeV ma.reconstructDecay('B0:jspiks -> J/psi:mumu K_S0:pipi', '5.2 < M < 5.4', ...)</pre>

perform B0 kinematic vertex fit using only the mu+ mu-# keep candidates only passing C.L. value of the fit > 0.0 (no cut) vertex.vertexRave('B0:jspiks', 0.0, 'B0 -> [J/psi -> ^mu+ ^mu-] K_S0', ...)

build the rest of the event associated to the B0
ma.buildRestOfEvent('B0:jspiks', ...)

```
# perform MC matching (MC truth association)
ma.matchMCTruth('B0:jspiks', ...)
```

determine B flavor
flavorTagger.flavorTagger('B0:jspiks', ...)

create and fill flat Ntuple with MCTruth and kinematic information

ma.variablesToNtuple('B0:jspiks', vc.mc_truth + vc.detae_mbc, ...)

Modular Analysis

- Analysis on steering file level using decay strings
- Particle reconstruction and selection
- MC matching
- Vertex fits
- Flavor tagging
- Continuum suppression

Variable Manager

- Particle properties
- Functions, e.g. daughter, matchedMC
- Event properties
- Aliases
- Few hundred variables
- Output to:
 - Ntuple (candidate based)
 - Event based tree
 - Histogram
 - HDF5

Thomas Kuhr

Basf2 Variable Index

A | B | C | D | E | F | G | H | I | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Α

abs acoplanarityAngle ancestorHasWhichFlavor angleToClosestInList angleToMostB2BInList aplanarity ArmenterosDaughter1Qt ArmenterosDaughter2Qt ArmenterosLongitudinalMomentumAsymmetry atcPIDBelle averageValueInList azimuthalAngleInDecayPlane

В

B0mcErrors b2bClusterPhi b2bClusterTheta b2bPhi b2bTheta backwardHemisphereEnergy backwardHemisphereMass backwardHemisphereMomentum backwardHemisphereX backwardHemisphereY backwardHemisphereZ beamE beamPx beamPv beamPz belleECLEnergy bssMassDifference **BtagToWBosonVariables**

JENNIFER2 Computing 12.12 charge

chargeTimesKaonLiklihood

Vertex Fitting Tools

- KFit ported from Belle
- RAVE (no support by developers any more)
- > TreeFitter
 - Adaption of decay chain fitter used by BaBar and LHCb
 - Speed up due to use of EIGEN library

Full Event Interpretation (FEI)

- Full reconstruction of one B meson
- Momentum and charge of signal B meson known
- All remaining particles belong to signal B meson
- Reconstruction

 of decays
 with neutrinos

mva package

LMU Thomas Kuhr

Belle mdst input in basf2 (b2bii)

LMU Thomas Kuhr

JENNIFER2 Computing 12.12.2019

page 11

Jupyter Notebooks

StarterKit

1st B2StarterKIt workshop, October 2017

Fitting Tools

What tools do you use for offline fitting? (please check all that apply) 47 responses

Further Topics Under Discussion

- Systematics framework
- Analysis preservation
- •

Summary

- Modular analysis and variable manager have simplified and standardized many analysis steps
- High level (B factory specific) analysis tools are implemented and well integrated
- > Trends in ntuple-level analysis:
 - Python and industry standard tools
 - Browser based (jupyter notebooks)
 - Machine learning
- Some unresolved issues (systematics, preservation)