Angular Broadening Measurements as a Probe of the Corona and Solar Wind

T. S. Bastian (NRAO) with M. Kenny (UVa), A. Kobelski (WVU),
A. Vourlidas (JHU/APL), J. Kasper (UM), K. Korreck (SAO),
A. Hegedus (UM), C. Salem (UCB), R. Fallows (ASTRON)

Parker Solar Probe

- Trace the flow of energy that heats and accelerates the solar corona and solar wind.
- Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind.
- Explore mechanisms that accelerate and transport energetic particles.

Instrumentation suite:

FIELDS – E and B fields, radio, dust (PI Bale)
SWEAP – electrons, protons, alphas (PI Kasper)
WISPR – wide field WL imager (PI Howard)
ISIS – mass spectroscopy (PI McComas)

Launched on 12 Aug 2018, the first perihelion passage of PSP in Nov 2018 already came within ~35 R_{\odot} of the photosphere.

PSP perihelia will eventually pass within 10 R_{\odot} the photosphere! Compare with Helios 1 & 2: perihelia of ~0.3 AU, or 65 R_{\odot}

Supporting Observations

- The PSP offers an unprecedented opportunity to characterize the solar wind, solar wind turbulence, and SEPs near their origin
- Comprehensive and complementary observations of the Sun and corona are needed to provide global perspective and a broader framework within which to interpret PSP data
- Ground-based radio observations are a part of this effort using a variety of direct and indirect observations
 - Jansky Very Large Array (JVLA)
 - o Low Frequency Array (LOFAR)
 - Institute for Space-Earth Environment (ISEE)
 - Arecibo Observatory (AO)

Solar Wind Spectrum

The spectra of B variations in the solar wind show a turbulence spectrum characterized by a Kolmogorov-like inertial range.

The spatial spectrum of electron density fluctuations is more complex, Kolmogorov-like on large spatial scales but flatter (power excess) on smaller spatial scales.

5

Remote Sensing at Radio Wavelengths

	Observation/Technique	Plasma Property
JVLA	Group delay	Mean electron number density n_e
	Refraction	Electron density gradient ∇n_e
	Angular broadening	Index α of Φ_n on scales of km to 100s of km Inner scale I_o , degree of anisotropy, B orientation
	Spectral broadening	Index α of Φ_n on scales of km to 100s of km Inner scale I_{in}
	Phase scintillations	Index α of Φ_n on scales of 100s to 1000s of km Outer scale I_{out}
E, AO	Doppler (freq) scintillations	Index α of Φ_n on scales of km to 100s of km Solar wind velocity v_{sw}
	Intensity scintillations (diffractive & refractive)	Index α of Φ_n on scales of km to 100s of km IPS: Solar wind velocity v_{sw} , δv , l_o
	Faraday rotation	B_{\parallel} , n_e
	Faraday fluctuations	Magnetic field fluctuations δB

LOFAR, ISEE, AC

Reminders

Fully ionized plasma: $\mu_{\nu}^2 = \epsilon_{\nu} = \frac{k^2 c^2}{\omega^2} = 1 - \frac{\omega_{pe}^2}{\omega^2}$ $\omega_{pe}^2 = 4\pi n_e e^2/m_e$

Taking $n_e = n_\circ + \delta n_e$ we have $\delta \mu = \frac{1}{2\mu_\circ} \frac{\omega_{pe}^2}{\omega^2} \frac{\delta n_e}{n_e} = \frac{1}{2\pi} \frac{\lambda^2 r_e}{\mu_\circ} \delta n_e$

For radiation incident on a uniform slab of plasma of thickness Δz :

$$\delta\phi = 2\pi \left(\frac{\Delta z}{\lambda} - \frac{\Delta z\mu_{\nu}}{\lambda}\right) = k\Delta z\delta\mu_{\nu} = \lambda r_e\Delta z\delta n_e$$

A density gradient yields a phase gradient. Since the direction of the incident radiation is given by the phase normal, this results in **refraction**.

For an inhomogeneity of transverse scale d, incident radiation is also forward scattered into a cone $\theta \sim \lambda/d$, a result of diffraction.

Angular Broadening

It is useful to treat the plasma medium as a thin, nonabsorbing, phase-changing screen ($\Delta z \sim b \ll D$)

The medium perturbs the phase front from a point source in the transverse dimension. The emergent wave front can be decomposed into an angular spectrum of planes waves: angular broadening.

A useful statistic is the wave structure function:

 $D(s) = \langle |\phi(\mathbf{r}) - \phi(\mathbf{r} + \mathbf{s})|^2 \rangle = 2[B_{\phi}(0) - B_{\phi}(s)]$

The electric field covariance is related to D(s) as $\Gamma(s) = \langle E(\mathbf{r})E^*(\mathbf{r} + \mathbf{s}) \rangle / \langle |\mathbf{E}^2| \rangle = \exp[-\mathbf{D}(\mathbf{s})/2]$

The coherence scale is the transverse scale on which $D(r_o) = 1$ and the angular width is then $\theta = 1/kr_o$.

We also have $t \sim \Delta \theta^2/2c$ (temporal broadening) and $\Delta v/v \sim v_{sw}\theta/c$ (spectral broadening).

Radio Interferometers are Machines for Measuring D(s)

The JVLA is a Fourier synthesis telescope; i.e., it measures the Fourier transform of the radio brightness distribution on the sky, referred to as the visibility function.

For a point source, suitably normalized, it is simply measuring the electric field covariance:

 $\Gamma(s) = \langle E(\mathbf{s}) E^*(\mathbf{r} + \mathbf{s}) \rangle / \langle |\mathbf{E}^2| \rangle = \exp[-\mathbf{D}(\mathbf{s})/2]$

It can be therefore be used as a useful probe of the solar wind.

Angular Broadening

Use angular broadening to constrain the spatial spectrum of electron density inhomogeneities in a turbulent plasma:

The wave structure function is related to the spatial spectrum of density inhomogeneities $\Phi_{ne}(q)$ through:

$$D(s) = \langle |\phi(\mathbf{r}) - \phi(\mathbf{r} + \mathbf{s})|^2 \rangle = 8\pi^2 \lambda^2 r_e^2 \Delta z \int_0^\infty [1 - J_\circ(qs)] \Phi_{n_e}(q) q dq$$

If $\Phi_{ne}(q)$ is described, say, by a power law with in inner scale I_o :

$$\Phi_{n_e}(q,z) = C_{n_e}^2(z)q^{\alpha-2}e^{-(ql_{\circ}/2)^2}$$

The relation has the following asymptotic dependencies when $0 < \alpha < 2$:

$$D_{\phi}(s) \sim C_{n_e}^2 \Delta z \lambda^2 s^{\alpha} \qquad s > l_{\circ}$$
$$D_{\phi}(s) \sim C_{n_e}^2 \Delta z \lambda^2 l_{\circ}^{\alpha - 2} s^2 \qquad s < l_{\circ}$$

Notice proportionality to λ^2 in either case.

PSP Perihelion 3

A near-minimum corona

SDO AIA Fe XII (193 Å) 14-Aug-2019 23:21:16.850

Observations were conducted over a solar rotation, from Aug 14– Sep 10

VLA A Configuration

- Angular resolution is $\theta \approx 1.5''/v_{GHz}$
- Frequency bands 1-18 GHz, or $\lambda =$ 1.7-30 cm, were used

Analysis

Fits performed using a Markov Chain Monte Carlo procedure (emcee package – Foreman-Mackey et al 2012)

The data were first "self-calibrated" to center the source; i.e., correct for the refractive offset. This eliminated two fitting parameters Δx and Δy , leaving the total source flux V(0), the coherence scales a & b, the position angle of the source, and the spectral index α to be determined along with their uncertainties.

Summary

These results are largely consistent with previous observations of small numbers of sources:

- All sources (except one) show a significant degree of anisotropy
 - \circ the anisotropy is such that the scattering inhomogeneities are close to radial in orientation
 - \odot The degree of anisotropy the ratio of the coherence scales appears to be larger and more variable for r < 5-6 R_{\odot}
 - $\circ\,$ there does not appear to be a clear dependence of anisotropy on position angle
- The spectral index α is significantly flatter than 5/3 in most cases (0.94)
 - Values of α are more variable for r< 5-6 R_{\odot} (but are more sparsely sampled)
 - Possible modulation of $\boldsymbol{\alpha}$ with position angle ?
- Evaluation of spectra displaying breaks is underway
- Ditto for analysis of refractive scintillations (not to be confused with IPS)

Inner/dissipation scale

- Previous work based on angular broadening measurements (e.g., Anantharamaiah et al 1994) did not find evidence for a dissipation scale in the structure function between 2-16 R_{\odot}
- On the other hand IPS observations report a roll-off in the spectrum that is interpreted as the presence of an inner scale at a frequency scale consistent with the proton cyclotron frequency

Fundamental inconsistency?

For PSP3, 8 LOS show clear signs of spectral breaks. Several other LOS show spectral that are Kolmogorov-like; i.e, with indices ~5/3 (or 3/2?).

Concluding Comments

- The Parker P3 results validate past earlier results using the VLA
- Unlike the VLA, the JVLA allows broadband observations of background sources to be made with much greater sensitivity - to 10s of mJy - than previously possible (~1 Jy)
- This enables many more sources to be observed over relatively short times to probe the foreground corona and inner heliosphere
- In contrast to previous work, ~15% sources show signs of spectral features that may be consistent with an inner scale.
 - If so, puzzling that so few breaks are seen, because JVLA baseline coverage is well-suited for detecting spectral breaks for elongations ~2-15 solar radii
 - Also striking that several LOS show no significant excess power

Concluding Comments

- Joint angular broadening and IPS observations of selected sources are needed.
- Also of great interest:
 - Angular broadening observations to greater elongations using lower frequency observations
 - Faraday rotation measurements using MSPs
 - Angular broadening and FR measurements of transients (CMEs)
 - Very long baseline (VLBA) observations are needed to probe larger spatial scales to determine inflection scale to flatter-than-Kolmogorov spectrum and its evolution

23