

Diboson searches and VBS studies in ATLAS

Francesco Cirotto Università degli studi Napoli Federico II and INFN sezione di Napoli

on behalf of the ATLAS Collaboration

Why study diboson processes

- *Why study di-boson processes at the LHC?
 - Stringent test of the standard model non-abelian character of the SU(2)L x U(1) gauge group at TeV scale
- ***** Precision test of:
 - sensitive to higher order QCD / EW corrections at TeV scale
 - → New physics
- * Model-independent means to search for new physics at the TeV scale.
 - Allow for the possibility of new physics with mass scales very close to the Electroweak Scale
 - Growing interest in indirect searches at LHC
- *Precise measurements help to constrain Standard Model contribution (background) in searches of many new physics models and Higgs analysis.

Searches covered in this talk

Exotic diboson searches

Vector boson scattering searches

- *Randall-Sundrum Radion: Spin-0 particle in models with warped extra dimension
- *Extended Higgs sector (2HDM): 5 Higgs bosons H, h, H±, A. (spin0)
- Spin-1 Heavy Vector Triplet
 - →2 charge W' boson,1 neural Z' boson
 - \hookrightarrow Model A (g_V=1), Model B (g_V=3)
- *Bulk Randall-Sundrum Graviton: Spin-2 particle, excitement of Kaluza-Klein graviton, in models with warped extra dimension.

- *Rare process in SM
- Indirect search of new Physics by studying anomalous couplings

- 1 Definition of a set of signal region(s) (SR)
 - Find the best cuts to optimize signal over background
- 2 Definition of a set of control regions (CR) to estimate backgrounds
 - → Define a region with a high purity of a specific background
 - → Estimate background with data-driven techniques
- ③Unblinding → Is there an excess?
- 4 Results are interpreted in terms of limits on models under study

F. Cirotto

4

- 1 Definition of a set of signal region(s) (SR)
 - Find the best cuts to optimize signal over background
- 2 Definition of a set of control regions (CR) to estimate backgrounds
 - → Define a region with a high purity of a specific background
 - Sestimate background with data-driven techniques
- 3Unblinding → Is there an excess?
- 4 Results are interpreted in terms of limits on models under study

Typically a cut&count analysis

Estimated with data-driven

$$\sigma = \frac{N_{selected} - N_{background}}{A \cdot \epsilon \cdot \int \mathcal{L} dt} \text{ techniques}$$

Include acceptance, efficiency and branching ratio

How to reconstruct hadronic V?

Resolving individual decay products become more difficult at high mass (boosted objects)

Reconstruct a single large-R jet (R=1.0) and investigate its substructure

- *Recover signal efficiency for merged decays
- *****Use tracking information
- *Jet Grooming: remove unwanted jet softcomponent, initial state radiation, multi-parton interaction, pile-up in jet reconstruction;

$$\Delta R(q_1, q_2) \sim \frac{2M(V)}{p_T(V)}$$

How to distinguish QCD and W/Z jets?

- ***Boson Tagging**: discrimination between signal merged jets and soft radiation merged jets;
 - → Identify 2 core substructure jets due to boson decays and reject single core substructure jets.
- *Background rejection optimized inside merged jet windows mass and combining cuts on the **D**₂ variable (built from information on the merged jet constituent)

Exotics diboson searches

- *Channel with the highest diboson branching ratio BR(VV—>had) ~50%
- *Only merged region selection
- ★5 signal regions (WW, ZZ, WZ, WZ+WW, WW+ZZ)
- Main background: multijets (~85%); diboson production, W/Z+jets, ttbar
 - →1D parametric function
 - Test & validation of the fit in data CRs

HDBS-2018-31

→JJ analysis improvements: Track-Calo Cluster Jets 139 fb-1

- *In the previous analyses calorimeter-clusters for large-R jets used (exploits the exceptional energy resolution of the ATLAS calorimetry);
- **★**When p_T >1 TeV, only a handful of calorimeter-cell clusters are created, each with limited angular resolution, but excellent energy resolution.
- *Combining information from the calorimeter and tracking detectors, the precision of jet substructure techniques can be improved for a wide range of energies.

- *Very "simple" selection
 - →2 large-R jets required with p_T>500 GeV and p_T>200 GeV
 - →m_{JJ}>1.3 TeV
 - \hookrightarrow Small separation, $\Delta y_{12} < 1.2$ allows to reject QCD background
 - →p_T asymmetry to reject events with badly reconstructed jets

*3-dimensional tagger (jet mass, D₂, n track) using TCC jets properly optimized

Acceptance imes Efficiency

HDBS-2018-31

	WW	1.3-1.6
Bulk RS, $k/\overline{M}_{Pl} = 1$	ZZ	none
	WW + ZZ	1.3–1.8

HDBS-2018-31

VV semileptonic analysis

- *Model interpretation:
 - → Spin-0: Heavy Higgs/Radion
 - Spin-1: HVT Z',W'
 - → Spin-2: Graviton
- *3 channel (0/1/2 leptons)
- 2 category (ggF-DY/VBF)
 - → VBF: two additional jets with large separation in pseudorapidity and a large dijet invariant mass
- *2 regimes (resolved/merged)
- *****B-tagging categorization
- *High/Low Purity categorization in merged regime

EXOT-2016-28 EXOT-2016-29

VV semileptonic analysis

*Lepton requirements:

- →0 lep: Lepton veto (loose lepton) and E_Tmiss>250 GeV;
- 1 lep: exactly 1 lepton (tight) and $E_T^{miss} > 100(60)$ and $GeV p_T(I\nu) > 200(75)$ GeV in merged (resolved);
- →2 lep: exactly 2 same flavor lepton (loose) in the Z mass range and with p_T > 30 GeV

*Jet requirements:

- merged regime: Selection of a merged jet that pass one of the two WP of the boson tagger
- resolved regime: Selection of two small-R jets in the region |ηj| <2.5 and with invariant mass compatible with Z or W boson.

EXOT-2016-28 EXOT-2016-29

VV semileptonic analysis

- ★W+jets (W) and Z+jets (Z) Control Regions:
 - →1 and 2 lep: same selections as the SR but using mass sidebands of the W/Z tagger
- *Top CR:
 - →1 lep: at least one b-jet instead of b-veto;
 - →2 lep: two different-flavour leptons
- *Validation region:
 - →0 lep: Mass sideband of the W/Z tagger

1D cut and count fit

- *0 lep: Transverse mass (mT)
- *1-2 lep: Invariant mass (mlljj/mllJ mljj/mlJ)

VV semileptonic analysis — Heavy Higgs

m(H) from 300 GeV to 1.4

EXOT-2016-29

VV semileptonic analysis — HVT

EXOT-2016-29

VV semileptonic analysis — Graviton

EXOT-2016-29

WZ full leptonic analysis

- *Lower branching ratio with respect to other channels
 - Expected to be particularly sensitive to low-mass resonances as it has lower background

★Drell Yan/VBF categorization

EXOT-2016-11

Combination VV + VH

	Lower limits on resonance mass [TeV]					
Channel	HVT model A		HVT model B		Bulk RS	
	Obs	Exp	Obs	Exp	Obs	Exp
\overline{WW}	2.9	3.1	3.6	3.5	1.7	1.9
WZ	3.6	3.6	3.9	3.9	_	-
ZZ	_	-	_	-	1.5	1.7
VV	3.7	3.7	4.0	3.9	2.3	2.2
\overline{WH}	2.6	2.8	2.8	3.1	_	_
ZH	2.7	2.5	2.8	2.8	-	-
VH	2.8	3.1	3.0	3.4	-	-
$\ell \nu$	4.6	4.6	-	-	-	_
$\ell\ell$	4.5	4.4	-	-	-	-
$\ell u / \ell \ell$	5.0	5.0	-	-	-	-
$\overline{VV/VH}$	4.3	4.3	4.5	4.4	_	_
$VV/VH/\ell\nu/\ell\ell$	5.5	5.3	_	-	_	-

EXOT-2017-31

Combination VV + VH

EXOT-2017-31

VV: future studies

Merged regime dominant

Discovery potential if excess is observed

ATL-PHYS-PUB-2018-022

Vector Boson Scattering

VBS: Motivation

- *Vector Boson Scattering is important for understanding EW symmetry breaking
- *****Without the SM Higgs, longitudinal VV scattering cross section (σ_{VV→VV}) increases as center-of-mass energy and violates unitarity at high energy
- *Can be solved by adding contributions from Higgs
- * VBS allows indirect search of New Physics by studying anomalous quartic gauge couplings (aQGC)

EW production $\mathcal{O}(\alpha^4)$

QCD-induced production $\mathcal{O}(\alpha^2\alpha s^2)$

- *VBS has distinctive final states topology
 - Two hadronic jets in forward and backward regions with very high energy (tagging jets)
 - → Hadronic activity suppressed between the two jets (rapidity gap) due to absence of color flow between. interacting partons.
 - → Boson pair more central than in QCD processes

arXiv:1108.0864

- *Fully leptonic final state (lllv)
- *A BDT is trained in signal region to separate WZjj-EW signal from WZjj-QCD and other backgrounds
 - →BDT build from 15 discriminant variables
 - → Variables related to the kinematics of tagging jets
 - → Variables related to the kinematics of vector bosons
 - → Variables related to both leptons and jets kinematics
- *Irreducible background: All candidates are prompt leptons or produced in the decay of tau (Main sources of backgrounds)
 - → W±Zjj QCD, ZZ, tt + V, tZj, VVV
- *Reducible background: at least one of the candidate leptons is not a prompt lepton
 - \hookrightarrow Z+j, Z γ , tt, Wt and WW
 - → Data driven matrix method

STDM-2017-23

- *Signal is extracted with a maximum-likelihood fit of BDT score distribution in SR
- **★**5.3σ observed
- *Fiducial cross section

$$\sigma_{WZjj-EW} = 0.57^{+0.14}_{-0.13} \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp. syst.)} ^{+0.05}_{-0.04} \text{ (mod. syst.)} ^{+0.01}_{-0.01} \text{ (lumi.) fb}$$

- *Differential cross section for 8 variables
 - → Variables sensitive to anomalous quartic gauge coupling
 - → Variables for model constrains:

STDM-2017-23

- *Channel with largest ratio of electroweak to strong production cross sections compared to other VBS diboson processes
 - → quark-gluon and gluon-gluon initiated diagrams are absent and contributions from quark and (anti-)quark annihilation diagrams are suppressed
- *Fully leptonic final state
- *Main background contributions:
 - Processes with two real prompt same-charge leptons, mainly W±Z+jets
 - Experimental backgrounds: Processes with non-prompt ("fake") leptons from mis-identified jets, or leptons from hadron decays
 - Processes with electron charge mis-identification

STDM-2017-06

 $\sigma^{\text{fid}} = 2.91^{+0.51}_{-0.47} \text{(stat.)} \pm 0.27 \text{(sys.)} \text{ fb}$

STDM-2017-06

- *Based on full Run-2 dataset
- ★Includes 4ℓ and 2ℓ2v channels
- *BDT trained to distinguish the kinematic differences between signal and backgrounds
 - → 12 input variables in the 4ℓ channel
 - → 13 input variables in the 2l2v channel
 - Simultaneous fit in the two channels

★5.52σ observed when combining channels

	$\mu_{ m EW}$	$\mu_{ ext{QCD}}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	$5.48 (3.90) \sigma$
$\ell\ell u u jj$	0.73 ± 0.65	_	$1.15~(1.80)~\sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	$5.52 \ (4.30) \ \sigma$

ATLAS-CONF-2019-033

VBS: EW VVjj semileptonic

- *3 channels explored
 - \hookrightarrow 0 lepton: $Z(\rightarrow vv)jj$
 - →1 lepton: W(→ℓv)jj
 - \hookrightarrow 2 lepton: $Z(\rightarrow \ell\ell)jj$
- *Resolved and merged region definitions
- *Multivariate approach: BDTs are constructed, trained and evaluated in each lepton channel and analysis region separately
- **★**2.7σ observed when combining channels

STDM-2017-20

VBS: future studies

- *The total W±W±jj VBS cross section can be decomposed into the polarized components based on the decays of the individual W bosons
- **★** W_L*W_L*jj is expected to be only about 6-7% of the total VBS cross sections →W_LW_L diverges if there is no Higgs boson or the Higgs boson is too heavy
- *Theoretical models with composite Higgs bosons
 - measurement of the longitudinal polarization will tell us the 125 GeV boson unitarizes scattering fully or only partially
- *Δφ_{jj} difference between the two leading jets able to discriminate the LL component from TT and LT contributions
- **★**2.7 σ for 3000 fb-1
 - A combination between ATLAS and CMS could reach 3σ with 2000 fb-1
 - → Machine Learning techniques could improve the prospects

ATL-PHYS-PUB-2018-022

VBS: future studies

ATL-PHYS-PUB-2018-022

anomalous Quartic Gauge Coupling (aQCG)

- *VBS provides excellent probes for the structure of gauge boson interaction, in particular for quartic gauge couplings
- *Anomalous quartic couplings predicted in new physics models and effective field theories would enhance cross sections
 - Quantify deviations from the Standard Model in a general or model independent way
- *****Deviations from SM are parametrized by an effective Lagrangian $\mathscr{L}_{EFT} = \sum_i f_i / \Lambda^{d_i-4} \mathcal{O}_i^{(d_i)}$ with 8D operator for aQCG
- In the presence of aQGC which signify strong interactions in the bosonic sector, VBS cross sections are enhanced at high VV invariant masses
 - → Observables correlated to m_{VV}

	$14\mathrm{TeV}$		
	WZjj	$\mid W^{\pm}W^{\pm}jj\mid$	
f_{S_0}/Λ^4	[-8,8]	[-6,6]	
f_{S_1}/Λ^4	[-18,18]	[-16,16]	
f_{T_0}/Λ^4	[-0.76,0.76]	[-0.6,0.6]	
f_{T_1}/Λ^4	[-0.50,0.50]	[-0.4,0.4]	
f_{M_0}/Λ^4	[-3.8,3.8]	[-4.0,4.0]	
f_{M_1}/Λ^4	[-5.0,5.0]	[-12,12]	

ATLAS Run-2 results will come soon

ATL-PHYS-PUB-2018-022

Conclusions

- *Diboson searches have a great importance for SM and BSM searches
- *Sophisticated object taggers are designed and applied to distinguish W/Z from SM background
 - Taggers are a very hot R&D topic now!
 - → Machine learning approach
- *No evidence for New Physics
 - Limits push G_{KK}, V', W' masses higher
 - Full Run-2 dataset analyses ongoing
- *ATLAS has published result on VBS measurements using 36.1 fb⁻¹ or 139 fb⁻¹
 - Run 2 of the LHC has revealed access to further exploration of final states in VBS
 - Observation of electro-weak production in W±W±jj, WZjj, ZZjj
 - → Measurement of fiducial cross sections for these final states
- *With more data being collected for the full Run2 higher order theoretical computations are becoming more important
- Improving sensitivity for BSM
- *VBS final states continue to be a playground for exciting physics to be explored!

Backup

VBS: Motivation

VVjj QCD

VVjj EWK non VBS

All EW-induced processes (only EW interaction vertices) treated as signal

An interference occurs between electroweak and QCD production

Signal region

Veto events with leptons:

No e or μ with $p_T > 25$ GeV and $|\eta| < 2.5$

Event pre-selection:

 \geq 2 large-R jets with $|\eta|$ < 2.0 and mass > 50 GeV

 $p_{\rm T1} > 500 {\rm ~GeV}$ and $p_{\rm T2} > 200 {\rm ~GeV}$

 $m_{\rm JJ} > 1.3 \text{ TeV}$

Topology and boson tag:

$$|\Delta y| = |y_1 - y_2| < 1.2$$

$$A = (p_{T1} - p_{T2}) / (p_{T1} + p_{T2}) < 0.15$$

Boson tag with D_2 variable, n_{trk} variable, and W or Z mass window

V+jets control region

Veto events with leptons:

No e or μ with $p_T > 25$ GeV and $|\eta| < 2.5$

V+jets selection:

 $\geq 2 \text{ large-}R \text{ jets with } |\eta| < 2.0$

 $p_{\rm T1} > 600 \ {\rm GeV} \ {\rm and} \ p_{\rm T2} > 200 \ {\rm GeV}$

Boson tag with D_2 and n_{trk} variables on either jet

Anti-boson tag with D_2 variable on other jet

HDBS-2018-31

Model	Signal Region	Excluded mass range [TeV]
	WW	none
Radion	ZZ	none
	WW + ZZ	none
	WW	1.3–2.9
HVT model A, $g_V = 1$	WZ	1.3-3.4
	WW + WZ	1.3–3.5
	WW	1.3–3.1
HVT model B, $g_V = 3$	WZ	1.3–3.6
	WW + WZ	1.3–3.8
	WW	1.3–1.6
Bulk RS, $k/\overline{M}_{Pl} = 1$	ZZ	none
	WW + ZZ	1.3–1.8

3.5 4 Jet p_T [TeV]

2.5

Selection	$ZV o \ell\ell J$	$ZV o \ell\ell jj$	
$Z o \ell \ell$	Two opposite-flavour leptons with $p_{\rm T}(E_{\rm T}) > 7~{\rm GeV}$		
	leading lepton	with $p_{\rm T}(E_{\rm T}) > 28~{ m GeV}$	
	83 <	$m_{ee} < 99 \text{ GeV}$	
	$85.6\mathrm{GeV} - 0.0117_{\mathrm{T}}^{\ell\ell} <$	$m_{\mu\mu} < 94.0 \text{GeV} + 0.0185_{\text{T}}^{\ell\ell}$	
Tag-jet selection for		tagged small-R jets with	
VBF category	$\eta_1 \cdot \eta_2 < 0$, $\left \Delta \eta_{jj}^{\text{tag}} \right > 4.7$ and $m_{jj}^{\text{tag}} > 770 \text{ GeV}$		
Jet requirements	$\geq 1 \text{ large-}R \text{ jet}$	≥ 2 'signal' jets with $p_{\rm T} > 30~{\rm GeV}$	
	with $p_{\rm T} > 200~{\rm GeV}$	$p_{\rm T} > 60~{\rm GeV}$ for the leading jet	
		no events with $> 2b$ -tagged jets	
Kinematic criteria	$\min(p_{\mathrm{T}}^{\ell\ell},p_{\mathrm{T}}^{J})/m_{\ell\ell J}$	$\sqrt{\left(p_{\mathrm{T}}^{\ell\ell}\right)^{2} + \left(p_{\mathrm{T}}^{jj}\right)^{2}} / m_{\ell\ell jj}$	
H	> 0.3	> 0.4	
W' or $G_{\rm KK}$	> 0.35	> 0.1 > 0.5	
VV OI OKK	× 0.00	× 0.0	
V boson tagging	p_{T} -dependent criteria	$70 < m_{jj} < 105 \text{ GeV } (V = Z)$	
	in D_2 and m_J	$62 < m_{jj}^{33} < 97 \text{ GeV } (\dot{V} = W)$	

Z o u u	$E_{\mathrm{T}}^{\mathrm{miss}} > 250 \; \mathrm{GeV}$
	$p_{\mathrm{T}}^{\mathrm{miss}} > 50 \; \mathrm{GeV}$
Multijet removal	$\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) < 1$
	$\min[\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \; \mathrm{jet})] > 0.4$
Tag-jet selection for	Two non- b -tagged small- R jets with
VBF category	$\eta_1 \cdot \eta_2 < 0, \Delta \eta_{jj}^{\text{tag}} > 4.7 \text{ and } m_{jj}^{\text{tag}} > 630 \text{ GeV}$
Jet requirements	$\geq 1 \text{ large-}R \text{ jet with } p_{\mathrm{T}} > 200 \text{ GeV}$
V boson tagging	p_{T} -dependent criteria on D_2 and m_J

VV semileptonic (llqq)

Selection	$ZV \to \ell\ell J$	$ZV \to \ell \ell j j$	
$Z \to \ell \ell$	Two opposite-flavour leptons with $p_{\rm T}(E_{\rm T}) > 7~{\rm GeV}$		
	leading lepton	with $p_{\rm T}(E_{\rm T}) > 28~{ m GeV}$	
	83 <	$m_{ee} < 99 \text{ GeV}$	
	$85.6\mathrm{GeV} - 0.0117_{\mathrm{T}}^{\ell\ell} <$	$m_{\mu\mu} < 94.0 \text{GeV} + 0.0185_{\text{T}}^{\ell\ell}$	
Tag-jet selection for		tagged small- R jets with	
VBF category	$\eta_1 \cdot \eta_2 < 0, \left \Delta \eta_{jj}^{\text{tag}} \right > 4.7 \text{ and } m_{jj}^{\text{tag}} > 770 \text{ GeV}$		
Jet requirements	> 1 large-R jet	≥ 2 'signal' jets with $p_{\rm T} > 30~{\rm GeV}$	
•	with $p_{\rm T} > 200~{\rm GeV}$	$p_{\rm T} > 60~{\rm GeV}$ for the leading jet	
		no events with $> 2 b$ -tagged jets	
Kinematic criteria	$\min(p_{\mathrm{T}}^{\ell\ell},p_{\mathrm{T}}^{J})/m_{\ell\ell J}$	$\sqrt{\left(p_{\mathrm{T}}^{\ell\ell}\right)^{2} + \left(p_{\mathrm{T}}^{jj}\right)^{2}} / m_{\ell\ell jj}$ > 0.4	
H	> 0.3	> 0.4	
W' or $G_{\rm KK}$	> 0.35	> 0.5	
V boson tagging	p_{T} -dependent criteria	$70 < m_{jj} < 105 \text{ GeV } (V = Z)$	
	in D_2 and m_J	$62 < m_{jj} < 97 \text{ GeV } (V = W)$	

VV semileptonic ($\ell \nu$)

Selection		WW (WZ) SR	W CR	$t\bar{t}$ CR		
Production category VBF		$m^{\mathrm{tag}}(j,j) > 770\mathrm{GeV}$ and $ \Delta \eta^{\mathrm{tag}}(j,j) > 4.7$				
1 Todaction category	$ggF/q\bar{q}$		ls VBF selection	n		
	Num. of signal leptons		1			
$W \to \ell \nu$ selection	Num. of veto leptons		0			
VV 7 CD SCIECCIOII	$E_{ m T}^{ m miss}$		$> 60 \mathrm{GeV}$			
	$p_{ m T}(\ell u)$		$>75\mathrm{GeV}$			
	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}(e\nu)$		> 0.2			
	Num. of small- R jets		≥ 2			
$V \to jj$ selection	$p_{ m T}(j_1)$	> 60 GeV				
	$p_{ m T}(j_2)$	> 45 GeV				
	m(jj) [GeV]	[66, 94]	< 66	[66, 106]		
		([82, 106])	or [106, 200]			
	$\Delta\phi(j,\ell)$		> 1.0			
	$\Delta\phi(j, E_{\mathrm{T}}^{\mathrm{miss}})$	> 1.0				
Topology criteria	$\Delta\phi(j,j)$	< 1.5				
	$\Delta\phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	< 1.5				
	$p_{\mathrm{T}}(\ell\nu)/m(WV)$	> 0.3 for VBF and 0.35 for ggF/q \bar{q} category				
	$p_{\mathrm{T}}(jj)/m(WV)$	> 0.0 101 VB1	and 0.00 for 88.			
	$j_1 \equiv b \text{ or } j_2 \equiv b$			> 0		
Num. of b-tagged jets	where $V \to j_1 j_2$	$\leq 1(2)$	≤ 1	(for jets other		
Train. of a tagged jets	$j_1 \neq b \text{ and } j_2 \neq b$			than j_1 or j_2)		
	where $V \to j_1 j_2$	0				

Selection		SR: HP (LP) W CR: HP (LP) $t\bar{t}$ CR: HP (LP)				
Production category	Production entergy VBF		$m^{\mathrm{tag}}(j,j) > 770 \mathrm{GeV} \mathrm{and} \Delta \eta^{\mathrm{tag}}(j,j) > 4.7$			
Troduction category	$ m ggF/qar{q}$	Fails VBF selection		on		
	Num. of signal leptons		1			
$W \to \ell \nu$ selection	Num. of veto leptons		0			
Selection	$E_{ m T}^{ m miss}$	$> 100 \mathrm{GeV}$				
	$p_{ m T}(\ell u)$	$> 200\mathrm{GeV}$				
	$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}(e u)$		> 0.2			
	Num. of large- R jets	≥ 1				
$V \to J$ selection	D_2 eff. working point (%)	Pass 50 (80)	Pass $50 (80)$	Pass 50 (80)		
v 7 b beleetion	Mass window					
	Eff. working point (%)	Pass 50 (80)	Fail 80 (80)	Pass 50 (80)		
Topology criteria	$p_{\mathrm{T}}(\ell\nu)/m(WV) \ p_{\mathrm{T}}(J)/m(WV)$	> 0.3 for VBF and > 0.4 for ggF/q \bar{q} category		F/qq̄ category		
Num. of b -tagged jet	excluding b-tagged jets with $\Delta R(J, b) \leq 1.0$	$0 \ge 1$		≥ 1		

VV Combination

Channel	Diboson state	Selection			VBF cat.	
		Leptons	$E_{\mathrm{T}}^{\mathrm{miss}}$	Jets	b-tags	
qqqq	WW/WZ/ZZ	0	veto	2J	_	_
u u q q	WZ/ZZ	0	yes	1J	_	yes
$\ell u q q$	WW/WZ	$1e,1\mu$	yes	2j, 1J	_	yes
$\ell\ell qq$	WZ/ZZ	$2e,2\mu$	_	2j, 1J	_	yes
$\ell\ell u u$	ZZ	$2e,2\mu$	yes	_	0	yes
$\ell \nu \ell \nu$	WW	$1e+1\mu$	yes	_	0	yes
$\ell \nu \ell \ell$	WZ	$3e, 2e+1\mu, 1e+2\mu, 3\mu$	yes	_	0	yes
$\ell\ell\ell\ell$	ZZ	$4e, 2e+2\mu, 4\mu$	_	_	_	yes
qqbb	WH/ZH	0	veto	2J	1, 2	_
u u b b	ZH	0	yes	2j, 1J	1, 2	_
$\ell u bb$	WH	$1e,1\mu$	yes	2j, 1J	1, 2	_
$\ell\ell bb$	ZH	$2e,2\mu$	veto	2j, 1J	1, 2	_
$\ell \nu$	_	$1e,1\mu$	yes	_	_	_
$\ell\ell$	_	$2e, 2\mu$	_	_	_	

Selection	0-lepton	1-lepton	2-lepton		
Trigger	$E_{ m T}^{ m miss}$ triggers	Single-electron triggers Single-muon or $E_{\mathrm{T}}^{\mathrm{miss}}$ triggers	Single-lepton triggers		
Leptons	0 'loose' leptons with $p_{\rm T} > 7~{\rm GeV}$	1 'tight' lepton with $p_{\rm T}>27~{\rm GeV}$ 0 'loose' leptons with $p_{\rm T}>7~{\rm GeV}$	2 'loose' leptons with $p_{\rm T} > 20~{\rm GeV}$ $\geq 1~{\rm lepton~with~} p_{\rm T} > 28~{\rm GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 200 GeV	> 80 GeV			
$m_{\ell\ell}$			$\begin{vmatrix} 83 < m_{ee} < 99 \text{ GeV} \\ -0.0117 \times p_{\mathrm{T}}^{\mu\mu} + 85.63 < m_{\mu\mu} < 0.0185 \times p_{\mathrm{T}}^{\mu\mu} + 94 \text{ GeV} \end{vmatrix}$		
Small- R jets	$p_{\mathrm{T}} > 20~\mathrm{GeV}$ if $ \eta < 2.5,~\mathrm{and}~p_{\mathrm{T}} > 30~\mathrm{GeV}$ if $2.5 < \eta < 4.5$				
Large- R jets		$p_{\mathrm{T}} > 200 \; \mathrm{GeV}, \eta $	< 2		
$V_{ m had} ightarrow J \ V_{ m had} ightarrow jj$	$V \text{ boson tagging, } \min(m_J-m_W , m_J-m_Z)$ $64 < m_{jj} < 106 \text{ GeV}, jj \text{ pair with } \min(m_{jj}-m_W , m_{jj}-m_Z), \text{ leading jet with } p_{\mathrm{T}} > 40 \text{ GeV}$				
Tagging-jets	$j \notin V_{\rm had}, \text{ not } b\text{-tagged}, \ \Delta R(J,j) > 1.4$ $\eta_{{\rm tag},j_1} \cdot \eta_{{\rm tag},j_2} < 0, \ m_{jj}^{\rm tag} > 400 \ {\rm GeV}, \ p_{\rm T} > 30 \ {\rm GeV}$				
Num. of b -jets		0			
Multijet removal	$\begin{array}{ c c } p_{\mathrm{T}}^{\mathrm{miss}} > 50 \; \mathrm{GeV} \\ \Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) < \pi/2 \\ \min[\Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{small-}R \; \mathrm{jet})] > \pi/6 \\ \Delta\phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, V_{\mathrm{had}}) > \pi/9 \end{array}$				

THE TO COLD LOTO COO