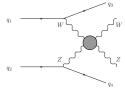
Unitarization effects in EFT predictions of VBS @LHC

Roberto A. Morales (work with C. García-García, M.J. Herrero)

COMPOSE-IT: Unitarity for composite models and beyond in the HL-LHC era Dipartimento di Fisica e Geologia (Università degli Studi di Perugia), 27-28 January 2020 Based on Phys. Rev. **D100** (2019) 096003 [1907.06668]



Outline

- Introduction: linear vs. non-linear EFT's
- The Electroweak Chiral Lagrangian (EChL)
- Aspects and implications of unitarity violation
- Restoring unitarity in WZ scattering at the LHC
- Parameter determination uncertainties
- Conclusions

The (EW) Chiral symmetry in the SM and BSM

The Spontaneously Breaking Sector (SBS) of the SM can be written as

$$\mathcal{L}_{SBS} = \frac{1}{4} \langle \partial_{\mu} M^{\dagger} \partial^{\mu} M \rangle - \frac{\lambda}{4} \left(\frac{1}{2} \langle M^{\dagger} M \rangle + \frac{\mu^2}{\lambda} \right)^2$$
 where $M = \sqrt{2} \left(\begin{array}{cc} \phi_0^* & \phi^+ \\ -\phi^- & \phi_0 \end{array} \right)$ and the Φ doublet is $\left(\begin{array}{cc} \phi^+ \\ \phi_0 \end{array} \right)$.

 \Rightarrow the \mathcal{L}_{SBS} is manifestly invariant under the global transformation:

$$M o M' = g_L M g_R^\dagger \quad \text{with } g_L \subset SU(2)_L \text{ and } g_R \subset SU(2)_R$$

This global $SU(2)_L \times SU(2)_R$ is called the EW Chiral symmetry. It is spontaneously broken down to the diagonal subgroup

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R} \equiv SU(2)_{Custodial}$$

Gauge interactions $(g' \neq 0)$ and different fermion masses (in the same doublet) explicitly break the Chiral and Custodial symmetries.

Main implication of Custodial symmetry: ρ parameter value is close to 1!

Linear approach to BSM: SMEFT

- The Higgs and the Goldstone bosons (GBs) form a left SU(2) doublet. In particular, the Higgs always appears in the combination H + v.
- The GBs transform linearly under the Chiral symmetry.
- Based on a **cutoff** Λ **expansion** (canonical dimension):

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} \hat{\mathcal{O}}_{i}^{d=6} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} \hat{\mathcal{O}}_{i}^{d=8} + ...$$

- SMEFT typically emerges from weakly interacting UV theory.
- Typical situation when H is a fundamental field.

Our approach to BSM: the non-linear EChL or HEFT

- The Goldstone bosons π^a are independent from the Higgs boson. In particular, the Higgs is a SU(2) singlet.
- The π^a transform non-linearly under the Chiral symmetry.
- Based on a **derivative expansion** \leftrightarrow Chiral expansion (powers of p). Derivates and masses are soft scales of the EFT with power counting $\mathcal{O}(p) \Rightarrow$ the \mathcal{L} is organized in terms of operators $\mathcal{O}(p^2)$, $\mathcal{O}(p^4)$, ...
- Associated to strongly interacting UV theory.
 Natural scenario to generate dynamically resonances.
- Appropriate for composite models of the EWSB (H as a pseudo GB).
- Non-trivial relation between linear and non-linear representations!
 Some higher order operators, that were dim-8 in the linear representation, can contribute to a lower order in the non-linear one (dim-4 in the Chiral expansion).

The Electroweak Chiral Lagrangian (EChL)

- Symmetries are Lorentz, CP, EW gauge $SU(2)_L \times U(1)_Y$ and Chiral $SU(2)_L \times SU(2)_R \to SU(2)_{L+R}$. Based on ChPT of QCD.
- Light degrees of freedom and building blocks are: Higgs boson as a singlet $\Rightarrow \mathcal{F}(H) = 1 + 2a\frac{H}{v} + b\left(\frac{H}{v}\right)^2 + \dots$ EW gauge bosons $\Rightarrow \hat{W}_{\mu} = gW_{\mu}^a\tau^a/2, \; \hat{B}_{\mu} = g'\,B_{\mu}\tau^3/2, \; \hat{W}_{\mu\nu}, \; \hat{B}_{\mu\nu}.$ EW GBs in $U = \exp\left(\frac{i\pi^a\tau^a}{v}\right)$ that transforms linearly $U \to g_L U g_R^{\dagger}$ $\Rightarrow D_{\mu}U = \partial_{\mu}U + i\hat{W}_{\mu}U iU\hat{B}_{\mu}$ and $\mathcal{V}_{\mu} = (D_{\mu}U)U^{\dagger}.$

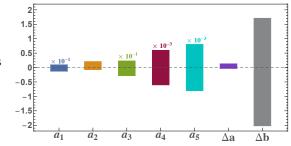
Our assumptions: fermion ints as in SM. Custodial sym preserved.

$$\mathcal{L}_{\textit{EChL}} = \mathcal{L}_2 + \mathcal{L}_4$$
 (relevant for VBS)

$$\begin{split} \mathcal{L}_{2} &= -\frac{1}{2g'} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle - \frac{1}{2g} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle + \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H) \\ &+ \frac{v^{2}}{4} \mathcal{F}(H) \langle D_{\mu} U^{\dagger} D^{\mu} U \rangle \\ \mathcal{L}_{4} &= a_{1} \langle U \hat{B}_{\mu\nu} U^{\dagger} \hat{W}^{\mu\nu} \rangle + i a_{2} \langle U \hat{B}_{\mu\nu} U^{\dagger} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \rangle - i a_{3} \langle \hat{W}_{\mu\nu} [\mathcal{V}^{\mu}, \mathcal{V}^{\nu}] \rangle \\ &+ a_{4} \langle \mathcal{V}_{\mu} \mathcal{V}_{\nu} \rangle \langle \mathcal{V}^{\mu} \mathcal{V}^{\nu} \rangle + a_{5} \langle \mathcal{V}_{\mu} \mathcal{V}^{\mu} \rangle \langle \mathcal{V}_{\nu} \mathcal{V}^{\nu} \rangle \end{split}$$

EChL parameters and interactions

- SM predictions recovered for $\Delta a = a 1 = 0$, $\Delta b = b 1 = 0$ and $a_i = 0$.
- Only a, b, a_4 and a_5 survive switching off gauge interactions (limit $g, g' \to 0$). Relevant parameters applying Equivalence Theorem (ET): $A(V_LV_L \to V_LV_L) \simeq A(\pi\pi \to \pi\pi)$
- Exp. bounds derived from [Pyhs. Rev. D98 (2018) 030001 (PDG)
 Pyhs. Rev. D99 (2019) 033001 (ATLAS)
 Phys. Lett. B 798 (2019)134985 (CMS)
 Phys. Rev. D101 012002 (ATLAS)
 ATLAS-CONF-2019-030 (2001.05178)



Implications of unitarity violation in VBS

- VBS is a powerful observable to look for New Physics: extremely sensitive to SM deviations introduced by EChL operators.
 Quasi-direct access to Goldstone dynamics through the longitudinal components (Equivalence Theorem).
- In the EChL context, interactions among gauge bosons scale with the external momenta ⇒ pathological predictions when energy increases ⇒ violation of unitarity of the S matrix!
- ullet Unitarity requires on each J^{th} partial wave of $A(V_{\lambda_1}V_{\lambda_2} o V_{\lambda_3}V_{\lambda_4})$

$$\operatorname{Im}[a^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s)] = \sum_{\lambda_a,\lambda_b} [a^J_{\lambda_1\lambda_2\lambda_a\lambda_b}(s)][a^J_{\lambda_a\lambda_b\lambda_3\lambda_4}(s)]^*$$

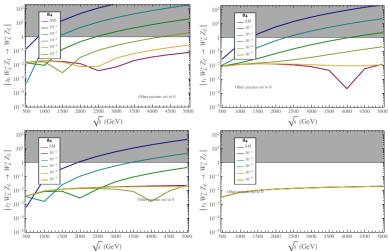
It is a coupled system among all helicity states!

- Unitarity condition can be rewritten as $|a^J(s)| \le 1$ and defines the unitary violation energy scale. This scale depends on EChL parameters.
- As in the ChPT, unitarity condition is fulfiled perturbatively

$$\text{Im}[a_{\mathcal{O}(p^4)}^J(s)] = |a_{\mathcal{O}(p^2)}^J(s)|^2$$

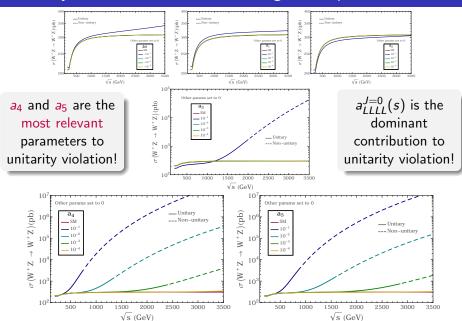
Unitarity violation in WZ scattering at partial wave level

As an example, consider the helicity state $LL \rightarrow LL$ and study the effect of a_4 in the partial wave amplitudes t_J corresponding to J=0, 1, 2, 3.



Next, consider the total cross section $\sigma(W^+Z \to W^+Z)$

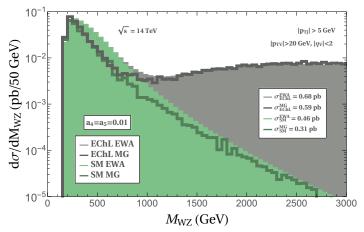
Unitarity violation in WZ scattering at subprocess level



Unitarity violation in WZ scattering at the LHC

Extrapolating this prediction at subprocess level in the prediction at the LHC process pp o WZ + jj

For example in the differential cross section: what happens above 1.5 TeV?

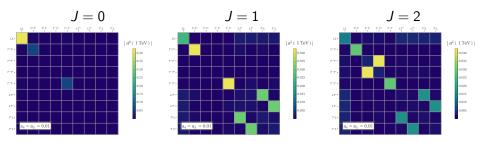


⇒ unitarization for realistic predictions is mandatory!

Coupled helicities system

Looking at the partial wave amplitudes in order to fulfil unitarity condition:

• All the helicities channels $(9 \times 9 = 81)$ have to be considered consistently.



- The i^{th} helicity amplitude grows with the CM energy like $A_i \sim s^{\xi_i}$ \Rightarrow eventually reach the unitarity limit $|a_i^J| = 1$ at some scale $s = \Lambda_i$.
- Longitudinal modes only dominant for some J's or (a_4, a_5) values. In particular, $\xi_{LLLL} = 2$ can be understood through the ET.

Unitarization methods applied to the total amplitude

In order to provide unitary amplitude \hat{A} , several methods are implemented.

If we suppress by hand the pathological behaviour in the total amplitude:

ullet Cut-Off: limit the validity range of the EFT up to the minimal unitarity violation scale Λ

$$\hat{A}(WZ \to WZ) = A(WZ \to WZ)$$
 for $s \le \Lambda^2$

 Form Factor (FF): suppress the pathological behaviour via multiplying the amplitude by a smooth, continuous function

$$\hat{A}(WZ o WZ) = A(WZ o WZ)f^{\mathrm{FF}} \quad \text{with } f^{\mathrm{FF}} = (1 + s/\Lambda^2)^{-\xi}$$

• Kink: now the suppression is not smooth, but through a step function

$$f^{\text{Kink}} = \begin{cases} 1 & \text{if } s \leq \Lambda^2 \\ (s/\Lambda^2)^{-\xi} & \text{if } s > \Lambda^2 \end{cases}$$

Unitarization methods applied to the partial waves

In the other two methods, unitarity is recovered from partial waves directly. Our proposal:

$$\hat{A}_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) = A_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) + 16\pi \sum_{J=0}^2 (2J+1) d_{\lambda_1\lambda_J}^J(\cos\theta) \left(\hat{\mathbf{a}}_{[\lambda_1\lambda_2\lambda_3\lambda_4]}^J(s) - a_{\lambda_1\lambda_2\lambda_3\lambda_4}^J(s) \right)$$

• **K-matrix**: an imaginary part is added such that the unitarity limit is saturated. The 9×9 matrix **a** containing the whole coupled helicity system is reconstructed as

$$\hat{\mathbf{a}}^J = \mathbf{a}^J \cdot [\mathbf{1} - i \, \mathbf{a}^J]^{-1}$$

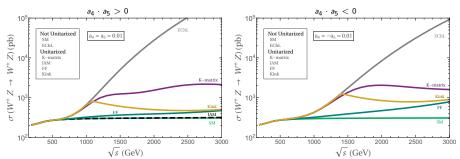
• Inverse Amplitude Method (IAM): from the contributions of $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ in the chiral expansion, the partial wave matrix amplitude is reconstructed as

$$\hat{\mathbf{a}}^J = \mathbf{a}^{(2)J} \cdot [\mathbf{a}^{(2)J} - \mathbf{a}^{(4)J}]^{-1} \cdot \mathbf{a}^{(2)J}$$

A priori, no preferred unitarization method, but in this case: Not only unitary predictions arise, but also the appropriate analytical structure \Rightarrow dynamically generated resonances can be accommodated with this procedure (as in ChPT for pion-pion scattering).

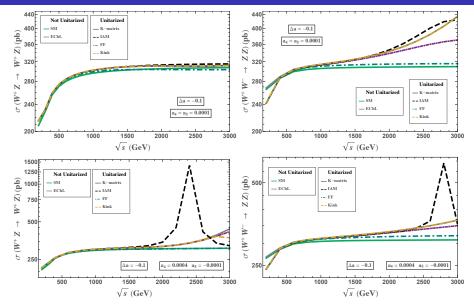
Implications of unitarity at subprocess level

Applying the unitarization procedures to the $WZ \to WZ$ total cross section Very different predictions using different methods! \Rightarrow the experimental constraints interpreted using one method or another will be different.



Then our aim is to give an estimate of the theoretical uncertainty in the experimental determination of a_4 and a_5 due to the unitarization scheme choice.

More benchmark points: dynamical resonances in the IAM

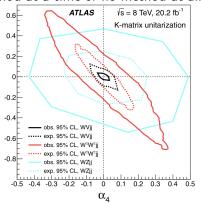


We work here with non-resonant scenarios below $4\pi v \sim 3$ TeV.

Present experimental constraints: no consensus yet

Current bounds are given using one method at a time or no method at all.

- Some ATLAS analyses: [Phys. Rev. D95 (2017) 032001] use K-matrix for $a_{4(5)} = \alpha_{4(5)}$ light blue contour at 95% C.L. Our work focused in this Run 1 aQGC in VBS with final state $W(I\nu)V(gg') + ii$
- Other ATLAS and CMS analyses: no unitarization method applied $a_{4(5)} = \frac{v^4}{16} \frac{f_{50(51)}}{\Lambda^4}$



	Expected (WV)	Observed (ZV)	Expected (ZV)
	(TeV ⁻⁴)	(TeV ⁻⁴)	(TeV ⁻⁴)
f_{S0}/Λ^4	[-4.2, 4.2]	[-40, 40]	[-31,31]
f_{S1}/Λ^4	[-5.2, 5.2]	[-32, 32]	[-24, 24]

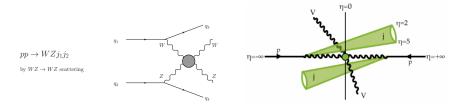
• Other searches: Cut-Off used.

95% C.L. limits for $\sqrt{s} = 13$ TeV, 35.9 fb⁻¹

[Phys. Lett. B 798 (2019)134985 (CMS)]

Our computation of unitarity effects at pp collisions

- 1.- Unitarization applied to VBS subprocess amplitude $\Rightarrow \sigma(pp \to WZjj)$ computed with a Python code using the Effective W Approximation That is by means of a factorization connecting the subprocess with the process.
- 2.- Then we check the goodness of the EWA by comparing with full MG5 $pp \rightarrow WZjj$ events (VBS+others). Both in SM and EChL.
- 3.- We compare our predicted $\sigma^{\text{EWA}}(pp \to WZjj)$ for a given unitarization method with LHC data in the (a_4, a_5) plane.
- 4.- VBS events usually selected by specific VBS-cuts: large pseudorapidity gap and large invariant mass (like $\Delta \eta_{jj} >$ 4 and $M_{jj} >$ 500 GeV).

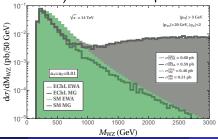


Effective W Approximation (EWA)

- W's and Z's considered as partons inside the proton.
 Generalization of the Weiszäcker-Williams approximation for photons.
- They are emitted collinearly from the fermions (quarks) with probability functions $f_V(\hat{x})$ and then scatter on-shell.
- Factorization using a sort of PDFs

$$\begin{split} &\sigma(pp \to (V_1 V_2 \to V_3 V_4) + X) = \\ &\sum_{i,j} \int \int dx_1 dx_2 f_{q_i}(x_1) f_{q_j}(x_2) \int \int d\hat{x}_1 d\hat{x}_2 f_{V_1}(\hat{x}_1) f_{V_2}(\hat{x}_2) \hat{\sigma}(V_1 V_2 \to V_3 V_4) \end{split}$$

 We have tested with MG5 the accuracy of various probability functions (SM and EChL): Dawson's Improved formulas work best!



More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved

$$\begin{split} f_{VT}^{Improved}(\hat{\mathbf{x}}) &= \frac{C_V^2 + C_A^2}{8\pi^2 \hat{\mathbf{x}}} \eta \left[\frac{-\hat{\mathbf{x}}^2}{1 + M_V^2/(4E^2(1-\hat{\mathbf{x}}))} + \frac{2\hat{\mathbf{x}}^2(1-\hat{\mathbf{x}})}{M_V^2/E^2 - \hat{\mathbf{x}}^2} + \left\{ \hat{\mathbf{x}}^2 + \frac{\hat{\mathbf{x}}^4(1-\hat{\mathbf{x}})}{(M_V^2/E^2 - \hat{\mathbf{x}}^2)^2} \left(2 + \frac{M_V^2}{E^2(1-\hat{\mathbf{x}})} \right) - \frac{\hat{\mathbf{x}}^2}{(M_V^2/E^2 - \hat{\mathbf{x}}^2)^2} \frac{M_V^4}{2E^4} \right\} \log \left(1 + \frac{4E^2(1-\hat{\mathbf{x}})}{M_V^2} \right) + \hat{\mathbf{x}}^4 \left(\frac{2-\hat{\mathbf{x}}}{M_V^2/E^2 - \hat{\mathbf{x}}^2} \right)^2 \log \frac{\hat{\mathbf{x}}}{2-\hat{\mathbf{x}}} \right] \end{split}$$

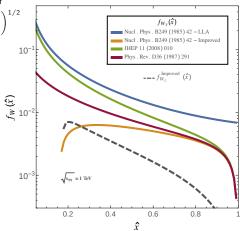
with $C_{V(A)}$ the vector(axial) couplings Vqq, \hat{x} the fraction of

quark energy
$$E=rac{\sqrt{s_{qq}}}{2}$$
 carried by V and $\eta\equiv\left(1-rac{M_V^2}{\hat{\chi}^2E^2}
ight)^{1/2}$

In the limit $M_V \ll E$ (LLA) \Rightarrow $f_{V_T}^{LLA}(\hat{x}) = \frac{C_V^2 + C_A^2}{8\pi^2 \hat{x}} \left[\hat{x}^2 + 2(1-\hat{x}) \right] \log \left(\frac{4E^2}{M_V^2} \right)$

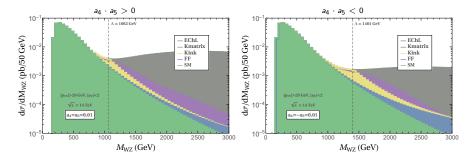
Among different f_V In the high \hat{x} region: similar results. In the low \hat{x} region: differ quite a lot.

Dawson's Improved gets correct $\sigma(pp \to WZ + jj)$ in low M_{WZ} region (most events here).



Predictions with different unitarization methods at LHC

- Different results depending on unitarization method also at the LHC.
- Both distributions and cross sections result to be different.

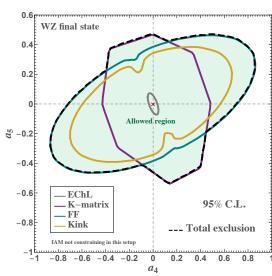


Low $M_{\rm WZ}$ region: all procedures give very similar predictions (ChPT). Non-unitarized EChL: SS a_4 and a_5 is more constrained than OS. Form Factor and Kink: OS a_4 and a_5 is more constrained than SS. Cut-Off scale is lower in the SS case.

In both SS and OS: $\sigma_{\rm EChL} > \sigma_{\rm K-matrix} > \sigma_{\rm Kink} > \sigma_{\rm FF}$

Our results: parameter uncertainty in (a_4, a_5) plane

- We focus on WZ Run 1 ATLAS analysis ($\sqrt{s}=8$ TeV and $\mathcal{L}=20.2\,\mathrm{fb}^{-1}$)
- From the ATLAS 'ellipse' (contour at 95% C.L.) for K-matrix we extract our equivalent cross section.
- For the other unitarization methods, we construct the contours at 95% C.L.
 Main assumption: selection cuts affect equaly all predictions.
- Non-unitarized gives strong constraints (small ellipse).
 a₄.a₅ > 0 more constrained.
- Overlap corresponds to the uncertainty in (a4, a5)
- Same game for linear EFTs.
- Shape and orientation change from one method to another.
 Size enhances by ~ 10 the uncertainty respect to the non-unitarized constraints.



Conclusions

- EFT is a powerful tool to study New Physics in a model-independent way.
- EChL is the most general EFT suitable for strongly interacting scenarios of EWSB. This EFT approach might lead to event predictions that violate unitarity.
- VBS is the key observable of this kind of physics.
- Unitarization methods must be applied in order to provide unitary predictions:
 - \Rightarrow different unitarization procedures lead to different predictions for VBS.
 - ⇒ a theoretical uncertainty is associated with this ambiguity.
- We provide a first approximation to quantify this uncertainty in the experimental determination of (a_4, a_5) due to the unitarization scheme choice through the elastic WZ scattering at the LHC.

⇒ this theoretical uncertainty can be large and it must be taken into account in the interpretation of the experimental data.

Thank you!

Backup slides

Transformations under $SU(2)_L \times SU(2)_R$

The rotations under $SU(2)_L$ and $SU(2)_R$ correspond to

$$g_L = e^{i \vec{ au} \cdot \vec{lpha}_L/2}$$
 and $g_R = e^{i \vec{ au} \cdot \vec{lpha}_R/2}$

Then building blocks transform under the global $SU(2)_L \times SU(2)_R$ as

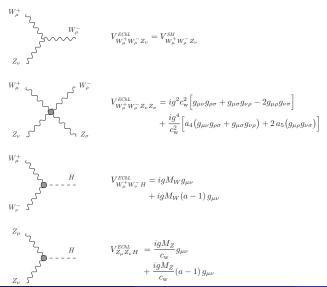
$$\begin{array}{ll} U\mapsto U'=g_L\,U\,g_R^\dagger & \text{with chiral dim.}=0 \\ \hat{B}_\mu\mapsto\hat{B}_\mu'=\hat{B}_\mu & \text{with chiral dim.}=1 \\ \hat{W}_\mu\mapsto\hat{W}_\mu'=g_L\,\hat{W}_\mu\,g_L^\dagger & \text{with chiral dim.}=1 \\ D_\mu U\mapsto(D_\mu U)'=g_L\,D_\mu U\,g_R^\dagger & \text{with chiral dim.}=1 \\ \hat{B}_{\mu\nu}\mapsto\hat{B}_{\mu\nu}'=\hat{B}_{\mu\nu} & \text{with chiral dim.}=2 \\ \hat{W}_{\mu\nu}\mapsto\hat{W}_{\mu\nu}'=g_L\,\hat{W}_{\mu\nu}\,g_L^\dagger & \text{with chiral dim.}=2 \end{array}$$

For the EW gauge symmetry $SU(2)_L \times U(1)_Y \subset SU(2)_L \times SU(2)_R$, the association of the generator of $U(1)_Y$ as the third one of the $SU(2)_R$ and the generator of $U(1)_{EM}$ as the third one of the $SU(2)_{L+R}$:

$$Y \leftrightarrow X_R^3$$
 and $Q \leftrightarrow X_{I+R}^3 = T^3 + Y$

Relevant Feynman rules for $A(WZ o WZ)^{\mathrm{EChL}}$

Simplified scenario: only effects of a, a_4 and a_5



Experimental searches for the ECHL parameters (95% C. L.)

- a_1 : EW precision measurements (S parameter) [Pyhs. Rev. D98 (2018) 030001 (PDG)] $-0.12 < S^{obs} = -4\pi a_1 < 0.16$
- a_2 and a_3 : ATLAS global-fit in the search with $\sqrt{s}=13$ TeV and $\mathcal{L}=36$ fb $^{-1}$ looking for W^+W^- and $W^\pm Z$ (full leptonic decays) via VBF [Pyhs. Rev. D99 (2019) 033001 (ATLAS)] \Rightarrow aTGC (γW^+W^-) and ZW^+W^-) $-8.3 < \frac{f_B}{A2} = \frac{8(a_2-a_1)}{c^2} < 26$ and $-3 < \frac{f_W}{A2} = -\frac{8a_3}{c^2} < 3.7$
- a_4 and a_5 : CMS search for anomalous EW production of W^+W^- , $W^\pm Z$ and ZZ plus 2 jets with $\sqrt{s}=13$ TeV and $\mathcal{L}=36$ fb⁻¹

[Phys. Lett. B 798 (2019)134985 (CMS)]
$$\Rightarrow$$
 aQGC ($w^+w^-w^+w^-$ and zzw^+w^-) $-2.7 < \frac{f_{50}}{\Lambda^4} = \frac{16a_4}{v^4} < 2.7$ and $-3.4 < \frac{f_{51}}{\Lambda^4} = -\frac{16a_5}{v^4} < 3.4$

- Δa : ATLAS combined measurements of all Higgs production and decay modes with $\sqrt{s}=13$ TeV and $\mathcal{L}=80$ fb $^{-1}$ [Phys. Rev. D101 012002 (ATLAS)] $0.94<\kappa_V=1+\Delta a<1.14$
- Δb : ATLAS search for $HH \to b \bar{b} b \bar{b}$ via VBF with $\sqrt{s}=13$ TeV and $\mathcal{L}=126~{
 m fb}^{-1}$ [ATLAS-CONF-2019-030 (2001.05178)] $-0.56 < \kappa_{2V}=1+\Delta b < 2.89$

Unitarized amplitudes

The partial wave decomposition is

$$a_{\lambda_1\lambda_2\lambda_3\lambda_4}^J(s) = \frac{1}{32\pi} \int_{-1}^1 d\cos\theta \ A(V_{\lambda_1}V_{\lambda_2} \to V_{\lambda_3}V_{\lambda_4})(s,\cos\theta) \ d_{\lambda,\lambda'}^J(\cos\theta)$$

where J is the total angular momentum of the system, $\lambda = \lambda_1 - \lambda_2$, $\lambda' = \lambda_3 - \lambda_4$, being λ_i the helicity states of the external gauge bosons, and where $d_{\lambda,\lambda'}^J(\cos\theta)$ are the Wigner functions.

For the K-matrix and IAM methods, the unitarized amplitude is reconstructed from the corresponding unitarized partial wave and the non-unitary amplitudes following:

$$\begin{split} \hat{A}_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) &= A_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\cos\theta) \\ &- 16\pi \sum_{J=0}^2 (2J+1) \, d_{\lambda,\lambda'}^J(\cos\theta) \, a_{\lambda_1\lambda_2\lambda_3\lambda_4}^J(s) \\ &+ 16\pi \sum_{J=0}^2 (2J+1) \, d_{\lambda,\lambda'}^J(\cos\theta) \, \hat{\mathbf{a}}_{[\lambda_1\lambda_2\lambda_3\lambda_4]}^J(s) \end{split}$$

More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved

$$\begin{split} f_{VT}^{Improved}(\mathbf{x}) &= \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[\frac{-x^2}{1 + M_V^2/(4E^2(1-x))} + \frac{2x^2(1-x)}{M_V^2/E^2 - x^2} + \left\{ x^2 + \frac{x^4(1-x)}{(M_V^2/E^2 - x^2)^2} \left(2 + \frac{M_V^2}{E^2(1-x)} \right) \right. \\ &\qquad \qquad \left. - \frac{x^2}{(M_V^2/E^2 - x^2)^2} \frac{M_V^4}{2E^4} \right\} \log \left(1 + \frac{4E^2(1-x)}{M_V^2} \right) + x^4 \left(\frac{2-x}{M_V^2/E^2 - x^2} \right)^2 \log \frac{x}{2-x} \right] \eta \\ f_{VL}^{Improved}(\mathbf{x}) &= \frac{C_V^2 + C_A^2}{\pi^2} \frac{1-x}{x} \frac{\eta}{(1+\eta)^2} \left\{ \frac{1-x - M_V^2/(8E^2)}{1-x + M_V^2/(4E^2)} - \frac{M_V^2}{4E^2} \frac{1+2(1-x)^2}{1-x + M_V^2/(4E^2)} \frac{1}{M_V^2/E^2 - x^2} \right. \\ &\qquad \left. - \frac{M_V^2}{4E^2} \frac{x^2}{2(1-x)(x^2 - M_V^2/E^2)^2} \left[(2-x)^2 \log \frac{x}{2-x} - \left(\left(x - \frac{M_V^2}{E^2x} \right)^2 - (2(1-x) + x^2) \right) \log \left(1 + \frac{4E^2(1-x)}{M_V^2} \right) \right] \\ &\qquad \left. - \frac{M_V^2}{8E^2} \frac{x}{\sqrt{x^2 - M_V^2/E^2}} \left[\frac{2}{x^2 - M_V^2/E^2} + \frac{1}{1-x} \right] \left[\log \frac{2-x - \sqrt{x^2 - M_V^2/E^2}}{2-x + \sqrt{x^2 - M_V^2/E^2}} - \log \frac{x - \sqrt{x^2 - M_V^2/E^2}}{x + \sqrt{x^2 - M_V^2/E^2}} \right] \right\} \end{split}$$

with $C_{V(A)}$ the vector(axial) couplings Vqq, x the fraction of

quark energy
$$E=rac{\sqrt{s_{qq}}}{2}$$
 carried by V and $\eta\equiv\left(1-rac{M_V^2}{x^2E^2}
ight)^{1/2}$

In the limit
$$M_V \ll E$$
 (LLA) \Rightarrow

$$f_{V_T}^{LLA}(x) = \frac{C_V^2 + C_A^2}{8\pi^2 x} \left[x^2 + 2(1-x) \right] \log \left(\frac{4E^2}{M_V^2} \right)$$

$$f_{V_T}^{LLA}(x) = \frac{C_V^2 + C_A^2}{2} \frac{1-x}{x}$$

