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The (EW) Chiral symmetry in the SM and BSM

The Spontaneously Breaking Sector (SBS) of the SM can be written as
1 A1 12\
S Tormy — 2 [ Z(pmT
LsBs 4(8,LM 0 M> 2 <2<M M>+ A)

where M = ﬁ( _‘fE_ ‘Z: ) and the ¢ doublet is ( ‘ZZ )
= the Lspgs is manifestly invariant under the global transformation:
M- M = gLI\/lg,T;, with g € SU(2); and ggr C SU(2)r
This global SU(2), »x SU(2)r is called the EW Chiral symmetry.
It is spontaneously broken down to the diagonal subgroup
SU(2)L x SU(2)r — SU(2)14r = SU(2) cistodial
Gauge interactions (g’ # 0) and different fermion masses (in the same

doublet) explicitly break the Chiral and Custodial symmetries.

Main implication of Custodial symmetry: p parameter value is close to 1!
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Linear approach to BSM: SMEFT

The Higgs and the Goldstone bosons (GBs) form a left SU(2) doublet.
In particular, the Higgs always appears in the combination H + v.

The GBs transform linearly under the Chiral symmetry.

Based on a cutoff A expansion (canonical dimension):

7®)

£(6) (
N4

Lsmerr = Lsm + Z 2 OF=0 + Z

Od=8 4 .

SMEFT typically emerges from weakly interacting UV theory.

Typical situation when H is a fundamental field.
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Our approach to BSM: the non-linear EChL or HEFT

The Goldstone bosons 72 are independent from the Higgs boson.
In particular, the Higgs is a SU(2) singlet.

The 7@ transform non-linearly under the Chiral symmetry.
Based on a derivative expansion <> Chiral expansion (powers of p).

Derivates and masses are soft scales of the EFT with power counting
O(p) = the L is organized in terms of operators O(p?), O(p?), ...

Associated to strongly interacting UV theory.
Natural scenario to generate dynamically resonances.
Appropriate for composite models of the EWSB (H as a pseudo GB).

Non-trivial relation between linear and non-linear representations!
Some higher order operators, that were dim-8 in the linear
representation, can contribute to a lower order in the non-linear one
(dim-4 in the Chiral expansion).
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The Electroweak Chiral Lagrangian (EChL)

@ Symmetries are Lorentz, CP, EW gauge SU(2), x U(1)y and
SU(2), x SU(2)g — SU(2)1+r. Based on ChPT of QCD.

o Light degrees of freedom and building blocks are:
Higgs boson as a singlet = F(H) =1+ 23% +b (%)2 + ...
EW gauge bosons = W, = gW;ir?/2, B,=g B,T3/2, VT/W, é/w-

EW GBs in U = exp (#) that transforms linearly U — gLUg;r?
= DU =9,U+iW,U—iUB, and V, = (D, U)UT.
Our assumptions: fermion ints as in SM. Custodial sym preserved.
Lecn = Lo+ L4 (relevant for VBS)

1 A a4 1
Lr=——(B, B")— —
2 2g’<“ ) 2g

(W, Wy 4 %aMHa#H — V(H)
V2
+ 4 F(H)(D,UTD"U)

L4 = a1 (UB,, U W) + jay(UB,, UTVH, VY]) — ias (W, [V*, V7))
+ 2, (VW)Y (VRVY) + a5 (W VRV, V)
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EChL parameters and interactions

@ SM predictions recovered
for Aa=a—-1=0,
Ab=b—-1=0and a; =0.

@ Only a, b, a4 and as survive
switching off gauge interactions
(limit g, g’ — 0).

Relevant parameters applying
Equivalence Theorem (ET):
A(VLVL — VLVL) ~ A(7l'7'(' — 7'('71')

@ Exp. bounds derived from
[Pyhs. Rev. D98 (2018) 030001 (PDG)
Pyhs. Rev. D99 (2019) 033001 (ATLAS)
Phys. Lett. B 798 (2010)134985 (CMS)
Phys. Rev. D101 012002 (ATLAS)
ATLAS-CONF-2019-030 (2001.05178)]
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Implications of unitarity violation in VBS

@ VBS is a powerful observable to look for New Physics: extremely
sensitive to SM deviations introduced by EChL operators.
Quasi-direct access to Goldstone dynamics through the longitudinal
components (Equivalence Theorem).

@ In the EChL context, interactions among gauge bosons scale with the
external momenta = pathological predictions when energy increases
=> violation of unitarity of the S matrix!

o Unitarity requires on each J® partial wave of A(Vy, Vi, — (Z%W

Im(ay, x,5,x,(5)] = Z [33, 0030, ()11, 0,050, ()]
AayAp
It is a coupled system among all helicity states!

o Unitarity condition can be rewritten as [a”(s)| < 1 and defines the
unitary violation energy scale. This scale depends on EChL parameters.

@ As in the ChPT, unitarity condition is fulfiled perturbatively

Im[ag e (5)] = adp2) (5)I?
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Unitarity violation in W/Z scattering at partial wave level

As an example, consider the helicity state LL — LL and study the effect of
aq in the partial wave amplitudes t; corresponding to J =10, 1, 2, 3.
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Next, consider the total cross section o(W*Z — WT2Z)
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Unitarity violation in WZ scattering at subprocess level
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Unitarity violation in W.Z scattering at the LHC

Extrapolating this prediction at subprocess level in the prediction at the
LHC process pp — WZ + jj
For example in the differential cross section: what happens above 1.5 TeV?

10_1;‘ —

Vs =14Tev Ipyyl > 5 GeV
Iprv|>20 GeV, |pvl<2

-

<
N
T

— oE¥A = 0.68 pb

— ¥ =0.59 pb

5]

— ofW¥A = 0.46 pb
— ol =0.31pb
o — EChLEWA
107 — EChLMG
— SM EWA
— SM MG
1078
0 500 1000 1500 2000 2500 3000

Mz (GeV)
= unitarization for realistic predictions is mandatory!
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Coupled helicities system

Looking at the partial wave amplitudes in order to fulfil unitarity condition:

@ All the helicities channels (9 x 9 = 81) have to be considered consistently.

J=0 J=2
[ (1Tev)| @ (1Tev) . III @ (1Tev)|
. «' .

@ The it helicity amplitude grows with the CM energy like A; ~ s&
= eventually reach the unitarity limit [a/| = 1 at some scale s = A;.

J=1

e Longitudinal modes only dominant for some J's or (aa, as) values.
In particular, &, ;1; = 2 can be understood through the ET.

Roberto A. Morales Unitarization effects of WZ scattering @LHC 12 /24



Unitarization methods applied to the total amplitude

In order to provide unitary amplitude A, several methods are implemented.

If we suppress by hand the pathological behaviour in the total amplitude:

o Cut-Off: limit the validity range of the EFT up to the minimal
unitarity violation scale A

AWZ — WZ) = AIWZ — WZ) fors < N>

e Form Factor (FF): suppress the pathological behaviour via
multiplying the amplitude by a smooth, continuous function

AWZ — WZ) = AWZ — WZ)FFF  with FF¥ = (1 4+ s/A%)~¢
@ Kink: now the suppression is not smooth, but through a step function

excink _ ) 1 if s < A?
(s/N2)~¢ if s > A2

Roberto A. Morales Unitarization effects of WZ scattering @LHC 13 /24



Unitarization methods applied to the partial waves

In the other two methods, unitarity is recovered from partial waves directly.
Our proposal:

2
. J ) J
Ax1agngag(s:€0s8) = Ax 5,550, (s,cos0) + 16w > (2 + 1) dy ,,(cos6) (a[Alx\2>\3>\4](s) - 3A1>\2/\3)\4(s))
J=0

o K-matrix: an imaginary part is added such that the unitarity limit is
saturated. The 9 x 9 matrix a containing the whole coupled helicity
system is reconstructed as

al=a’-[1-ial]!

o Inverse Amplitude Method (IAM): from the contributions of
O(p?) and O(p*) in the chiral expansion, the partial wave matrix
amplitude is reconstructed as

a7 =a®’ . [a®J) _ a® 1. a0/

A priori, no preferred unitarization method, but in this case:

Not only unitary predictions arise, but also the appropriate analytical
structure = dynamically generated resonances can be accommodated
with this procedure (as in ChPT for pion-pion scattering).
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Implications of unitarity at subprocess level

Applying the unitarization procedures to the WZ — WZ total cross section
Very different predictions using different methods! = the experimental
constraints interpreted using one method or another will be different.
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Then our aim is to give an estimate of the
theoretical uncertainty in the experimental
determination of az and as due to the
unitarization scheme choice.
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More benchmark points: dynamical resonances in the IAM
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We work here with non-resonant scenarios below 47v ~ 3 TeV.
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Present experimental constraints: no consensus yet

Current bounds are given using one method at a time or no method at all.

06 ATLAS ls=8TeV,20.2fb"
o SOme ATLAS analyses: E K-matrix unitarization
[Phys. Rev. D95 (2017) 032001] 0.4~
use K-matrix 02l
for 34(5) = CK4(5) o -,
light blue contour at 95% C.L. » .t \
Our work focused in this Run 1 045
aQGC in VBS with final state o —obs. 95°% CL, W
W()V(aq') + o Tmmetem
oo exp. 95% CL, W*Wjj
o Other ATLAS and CMS analyses: ©8-  os.os%cLwz
M . H . C exp. 95% CL, WZjj
no unitarization method applied 0 s e T o b2 05 64 o5
v4 Tso(s1) o,

d4(5) = 16~ A4

Expected (WV) Observed (2V) Expected (ZV)

(TeV—%) (TeV—%) (TeV—4)
feo/ AT [2247] [—40,40] [-31,31]
fs1/ A} [-5.2,52] [-32,32] [—24,24]
@ Other searches: Cut-Off used. 95% C.L. limits for /s = 13 TeV, 35.9 fb~1

[Phys. Lett. B 798 (2019)134985 (CMS)]
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Our computation of unitarity effects at pp collisions

1.- Unitarization applied to VBS subprocess amplitude = o(pp — WZjj)
computed with a Python code using the Effective W/ Approximation
That is by means of a factorization connecting the subprocess with the process.

2.- Then we check the goodness of the EVWA by comparing with full MG5
pp — WZjj events (VBS+others). Both in SM and EChL.

3.- We compare our predicted UEWA(pp — WZjj) for a given
unitarization method with LHC data in the (aq4, as) plane.

4.- VBS events usually selected by specific VBS-cuts: large pseudorapidity
gap and large invariant mass (like Anj; > 4 and Mj; > 500 GeV).

pp — WZjijs

by WZ — WZ scattering
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Effective W Approximation (EWA)

@ W's and Z's considered as partons inside the proton.
Generalization of the Weiszacker-Williams approximation for photons.
@ They are emitted collinearly from the fermions (quarks) with

probability functions /(%) and then scatter on-shell.
@ Factorization using a sort of PDFs

o(pp = (ViVe = V3Va) + X) =

Z//dxldngq (1), (x2) //dxldx2f\/l ), (52)6(Vi Vo — V3Va)

@ We have tested with MG5 the accuracy of various probability

functions (SM and EChL) Dawson s Improved formulas work best!
107! [Nucl. Phys. B249 (1985) 42]

Pl > 5 GeV
Iprv1>20 Gev, iyl <2

do/dMyy (pb/50 GeV)
>

L L L
1500 2000 2500 3000

Mz (GeV)

L
1000

Roberto A. Morales Unitarization effects of WZ scattering @LHC



More about the EWA

The most accurate EWA expression in our setup is the Dawson's Improved

2 2 2 o2 o
plmproved (o _ Cv T Ca [ —* 2%°(1 - %)
VT 828 1+ M2 /(4E2(1 — 8)) M2 /E2 — %2
o2 4 2 -
X M 4E°(1 — %
T (M2 /E2 — 22)2 ‘:}k’g(lJr (2 )
(M}, /E2 — %2)2 2F 2

41— %) M3
(M3 /B2 — 22 <2+ -

)

E2(1 — &)

with Cy(4) the vector(axial) couplings Vqq, X the fraction of

quark energy E = ¥ ;qq carried by V and n

(1,

In the limit My < E (LLA) =

2 2
LLAgy — SUtCA [o2 _ 2 4g2
fVT (x) = P [x +2(1 x)] log M‘Z/

Among different
In the high X region: similar results.
In the low X region: differ quite a lot.

Dawson’s Improved gets correct
o(pp = WZ + jj) in low Mwz region
(most events here).
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Predictions with different unitarization methods at LHC

o Different results depending on unitarization method also at the LHC.
@ Both distributions and cross sections result to be different.

ag a5 >0 as a5 <0
T 107" T T T

A
'

=1401 GeV.

T T
| A=1062GeV.
'

do/dMwz (pb/50 GeV)

500 1000 1500 2000 2500 3000

500 1000 1500 2000 2500 3000
Mz (GeV) Mz (GeV)

Low Myyz region: all procedures give very similar predictions (ChPT).
Non-unitarized EChL: SS a4 and as is more constrained than OS.
Form Factor and : OS a4 and as is more constrained than SS.
Cut-Off scale is lower in the SS case.

In both SS and OS: oechl > Okimatrix > O > OFF
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Our results: parameter uncertainty in (as, as) plane

@ We focus on WZ Run 1 ATLAS analysis (/s = 8 TeV and £ = 20.2fb™ ")

@ From the ATLAS ‘ellipse’ (contour at 95% C.L.) for K-matrix we extract our

equivalent cross section.
@ For the other unitarization
methods, we construct the
contours at 95% C.L.
Main assumption: selection cuts
affect equaly all predictions.

@ Non-unitarized gives strong
constraints (small ellipse).
as.as > 0 more constrained.

@ Overlap corresponds to the
uncertainty in (as, as)

@ Same game for linear EFTs.

@ Shape and orientation change
from one method to another.
Size enhances by ~ 10 the
uncertainty respect to the
non-unitarized constraints.
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Conclusions

@ EFT is a powerful tool to study New Physics in a model-independent way.

@ EChL is the most general EFT suitable for strongly interacting scenarios of
EWSB. This EFT approach might lead to event predictions that violate
unitarity.

@ VBS is the key observable of this kind of physics.

@ Unitarization methods must be applied in order to provide unitary
predictions:
=> different unitarization procedures lead to different predictions for VBS.
= a theoretical uncertainty is associated with this ambiguity.

@ We provide a first approximation to quantify this uncertainty in the
experimental determination of (a4, as) due to the unitarization scheme
choice through the elastic W/Z scattering at the LHC.

= this theoretical uncertainty can be large and
it must be taken into account in the interpretation of the
experimental data.
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Thank you!
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Backup slides
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Transformations under SU(2), x SU(2)g

The rotations under SU(2), and SU(2)r correspond to

g = e™/2 and  gp = &R/
Then building blocks transform under the global SU(2), x SU(2)r as

U—U =g Ugh with chiral dim. =0

éu — B{L = éu with chiraldim. =1

W, > W, =g W, g with chiral dim. =1

D,Uw (D,U) =g/ D UgR with chiraldim. =1

B — B/ = B/W with chiraldim. =2

WW — W;w =g W;w gz with chiral dim. =2

For the EW gauge symmetry SU(2), x U(1)y C SU(2). x SU(2)R, the
association of the generator of U(1)y as the third one of the SU(2)g and
the generator of U(1)gp as the third one of the SU(2)r:

Y<—>XE, and Q<—>XL3+R:T3+Y
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Relevant Feynman rules for A(WZ — WZ)EChE

Simplified scenario: only effects of a, a4 and as

Wi

"
"L EChL SM
VW: Wz, VW;'IV; z,
Zy
Wi W,
e S22
Vit 2,2, =190 {g/mg,m + GuoGup — QngW}
igt
+ 5 [m (9uv9p0 + GuoGup) +2as5 (g,mgw)]
Z, 2,

p
" V‘t( My = 19Mw g
+igMw(a—1) gu
w,
} s,
ow
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Experimental searches for the ECHL parameters (95% C. L.)

a1: EW precision measurements (S parameter) [pyhs. Rev. D98 (2018) 030001 (PDG)]
—0.12 < S° = —47a; < 0.16

a» and as: ATLAS global-fit in the search with /s = 13 TeV and £ = 36
fb~! looking for W+ W= and W*Z (full leptonic decays) via VBF

[Pyhs. Rev. D99 (2019) 033001 (ATLAS)] = a1 GC (yw+w— and ZW*W )
—83< g :M<26and 3<hy - 8% 37

as and as: CMS search for anomalous EW production of W+W , WEZz
and ZZ plus 2 jets with /s = 13 TeV and £ = 36 fb~!
[Phys. Lett. B 798 (2019)134985 (cMs)] = aQGC (wrw—w*w— and zZzZW+w—)

27 < By =102 <o 7and 34< =105 <34

Aa: ATLAS combined measurements of all Higgs production and decay
modes with \/s = 13 TeV and £ = 80 fb™! (e rev D101 012002 (ATLAS)]
09 <ky=1+Aa<1.14

Ab: ATLAS search for HH — bbbb via VBF with /s = 13 TeV and
L =126 fb~! [ATLAS-CONF-2010-030 (2001.05178)]

—0.56 < Koy =14+ Ab < 2.89
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Unitarized amplitudes

The partial wave decomposition is

1 1
ail/\z/\y\‘l(s) = Tom / X dcosf A(Vy, Vi, = Vi, Vi, )(s, cosb) d/{)\,(cos 0)

where J is the total angular momentum of the system, A = A1 — A2, M = A3 — A4, being )\; the

helicity states of the external gauge bosons, and where di )‘,(cos ) are the Wigner functions.

For the K-matrix and IAM methods, the unitarized amplitude is
reconstructed from the corresponding unitarized partial wave and the
non-unitary amplitudes following:

AA)\l)\2)\3)\4(S, COS 9) = A>\1>\2>\3,\4(S, COos (9)
2
—16m Y (2J + 1) d§ \(cos 0) a3 x, 2,0 (5)
J=0
2

+ 167 Z(2J +1) di/\,(cos 0) E?'[J>\1,\2,\3,\4](5)
J=0
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More about the EWA

The most accurate EWA expression in our setup is the Dawson’s Improved

cZ +c2 —x? 2x2(1 — 41— M2
flmeroved oy _ SVt Ca x 4 x“(1 — x) N X2+( x'(1 = x) ; 2y v

VT 8m2x |1+ MZ/(4E2(1 —x)) M} /E2 — x2 M2 /E2 — x2 E2(1 — x)
x2 M4 | 1 4E2(1 — x) 4 2 — x 2 | X
———5 o + +x og ——
(M2 JE2 — x2)2 2E4 € M2, M2, /E? — x2 o x|"
2 2 2 2 2 2
plmproved ) _ Cy+Cil—x 1 {1*X*Mv/(SE ) My 14201 —x) 1
Vi 2 x  (14+n)2 | 1—x+M/(4E2)  4E2 1 — x+ M} /(4E2) MY, /E2 —

M2 x2

2\ 2 2
v 2 X My, 5 4E°(1 — x)
_— | (2 — x)“ o — X — —— —(2(1 — x) + x lo, 1+ —
4E2 2(1 — x)(2 — M2, /E2)2 [( Vg 5 — (( E2x> @0 =) )) g( M2,
M2, x [ 2 N 1 } g 27x7,/ — M2 /E? gxf1/x27M‘2//E2
8E2 /X2—M‘2//E2 X 7M‘2//E2 1—x 2 — x4 ,/x M2/E2 x + /x2—M2V/E2

with Cy(4) the vector(axial) couplings Vqq, x the fraction of

1/2
M2
quark energy E = ;qq carried by V and n = (1 — —XZ‘E/2>

In the limit My < E (LLA) =
c2+c2 2
FREA(x) = S5 A [ 421 — x)] log (%)

8m

2 2
FLtA(y = SR 1-x
v, p x
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