

well established: external dissipation in ISM (not the case in X-rays???)

Credits to: P. Mészáros 2001 and Panaitescu et al. 2013

γ-ray bursts: the model

Cavallo & Rees 1978; Paczýnski 1986; Goodman 1986 Shemi & Piran 1990; Rees & Meszaros 1994

Usov 1992; Thompson 1994; Meszaros & Rees 1997 Lyutikov & Blandford 2003

γ-ray bursts and more

What are the problems?

I - Prompt emission:
-what is the jet composition?
-where the emission is produced? (1E12-1E16 cm)
-what is the dissipation process?
-what is the topology of the magnetic field?

II - Soft X-ray afterglow:

- What is the origin of the plateau?
- What is the central engine of the GRB BH or NS?

III - What we can learn with Wide FOV soft X-ray mission?

- Soft X-ray extension of the prompt emission spectra (now 10 keV 10 MeV)
- Off-axis prompt emission tails (larger viewing angle softer emission) **GW counterparts**
- Off-axis afterglow emission GW counterparts
- Shock break out GW counterparts and Supernovae precursors
- IV From a polarisation?
- radiative process of prompt? (long tale emission)
- magnetic field structure of jet?
- structure of the jet?

Old mystery from GRB spectra

simple non-thermal like spectra

Preece et al. 1998; Frontera et al. 2000; Ghirlanda et al. 2002; Kaneko et al. 2006; Nava et al. 2011; Sakamoto et al. 2011; Goldstein et al. 2012; Gruber et al. 2014; Lien et al. 2016; Yu et al. 2016 + more

 $\alpha = -1.5$

DOESN'T WORK

 $\alpha \sim -1$

baryon load to the fireball ?

Shemi & Piran 1990 Rees & Meszaros 1994

dissipation of EM outflow?

Usov 1992 Thompson 1994 Meszaros & Rees 1997 Lyutikov & Blandford 2003

synchrotron?

Katz 1994 Rees & Meszaros 1994 Tavani 1996 Sari et al. 1996, 1998

fast cooling?

Ghisellini et al. 2000

How to solve?

Recent news and hopes for the future

Recent news and hopes for the future

synchrotron emission in marginally fast cooling regime in Fermi/GBM GRBs (8 keV - 40 MeV)

Ravasio et al. 2018,2019

However, two-component (thermal + nonthermal) can also explain the very same feature

Ryde & Pe'er 2009; Guiriec et al. 2011,2013; Burgess et al. 2014

Recent news and hopes for the future

Low energy extension is the crucial point!

systematic DETECTION of GRBs in soft X-rays and optical range in the prompt phase is necessary!

Oganesyan et al. 2019

POLARISATION during the prompt - NOT ONLY SPECTRAL SHAPES

Radiative process/es responsible for the prompt emission

synchrotron photospheric emission

Magnetic field structure

ordered vs random or even in-homogenous within gyro-radius

Viewing angle and Jet structure

!!!No well convincing measurements of polarisation during the prompt phase!!!

some reports by RHESSI, INTEGRAL-SPI, -IBIS, IKAROS-GAP, Astro-Sat, COSI, POLAR

Gill, Granot, & Kumar (2019)

Polarisation: hard to resolve a single ~1s pulse

BUT

The tail emission of a GRB pulse is longer in X-rays! (well-delayed from GW for off-axis)

Time since BAT trigger (s)

Polarisation of the tail emission

Gill, Granot, & Kumar (2019)

Structured jets-prompt emission

Structured jets-afterglow-confirmed

GRB 170817/GW 170817

Ghirlanda et al. 2019

multi-wavelength LCs of the afterglow

apparent size is 2.5 milli–arc seconds at > 200 days

A Real source image

D Choked jet cocoon simulated image + real noise

A = 30

13h09m48.0695s 48.0690s

48.0685s

RA

48.0680s

-23°22'53.38"

О Э Д 53.39"

53.40"

-23°22'53.38"

ට I 53.39"

53.40"

D'Avanzo et al. 2018 Dobie et al. 2018 Alexander et al. 2018 Troja et al. 2018

.

see also Mooley et al. 2018

48.0675s

C Successful jet

E Choked jet cocoon

48.0690s

 $\theta_c = 45$

simulated image + real noise

imulated image + real noise

01 insity [µJy/beam]

-20

48.0680s

48.0685s

RA

48.0675s

The polarisation limits in GRB170817/GW170817

R. Gill & J. Granot 2019: "the field just behind the shock must have a finite, albeit mildly sub-dominant, component parallel to the shock normal"

X-ray afterglow emission: unknown nature

- plateau phase is observed at least in 1/3 of GRBs

energy injection is the most discussed model (has chromaticity problem)

Rees & Meszaros 1998 Zhang et al. 2006 Granot & Kumar 2006 Nousek et al.2006

would require a stable NS

Dai & Lu 1998 Zhang& Meszaros 2001 Yu et al. 2010 Metzger et al. 2011 Dall'Osso et al. 2011

recently geometric models are proposed Oganesyan et al. 2019; Beniamini et al. 2019

taken from Kumar et al. 2008

 $R_0 = 9 \times 10^{15}$, cm, $\Gamma_c = 160$, $\theta_{c,\Gamma} = 2^{\circ}$, k = 2

time after trigger [d]

s⁻¹]

 cm^{-2}

10

(0.5

XRT

on-axis or inside of the core of the jet

Oganesyan et al. 2019

θ

On-axis observer

Ascenzi et al. 2019 (in prep)

At edge observer

Ascenzi et al. 2019 (in prep)

Off-axis observer

Ascenzi et al. 2019 (in prep)

Geometric models for X-rays: from the afterglow

- PLATEAU appears for a slightly off-axis observer only (in contrary to the prompt emission)
- PLATEAU is ~ achromatic
- very fast decays after plateau are not explained

We have a family of solutions from PROMPT and AFTERGLOW on and off axis highly predicative chromatic/achromatic LCs

Beniamini et al. 2019

We need Wide Field X-ray (and optical LSST?) detectors to identify the nature of the GRB afterglows

Key point of the multi-messenger detections

Skymap of GWs

BUT we need to look inside of the JET (compactness problem, see e.g. Matsumoto et al. 2019)

FOV optical instruments

HOW TO IMPROVE?

Key point of the multi-messenger detections

in soft X-rays

I - Prompt emission:

- low energy extension of the spectra of GRBs down to 2 keV (WFM of eXTP) (the key point to understand the rad. processes responsible for the GRB)

- off-axis prompt emission and its tails in soft X-rays as a counterpart of GWs
- polarisation of the prompt accessed by its long-lasting tail (key point for the magnetic field structure)

II - Afterglow

- Off-axis X-ray afterglow as a counterpart of GWs
 + probe of the jet structure
- Combining the merger remnant info from GW observations and the X-ray plateau better constraints on the nature of the merger remnant and EOS
- eXTP can increase the numbers of joint GW/X-ray off-axis detections
- Polarisation of X-ray afterglow as a key point for the acceleration physics

III - Shock break out: a short flash and its echo important for making targeted search of **GWs from SN** (GW signal from explosion or new born magnetar)