A personal take on indirect searches of dark matter with cosmic rays (antimatter)

Mirko Boezio INFN TS & IFPU

Features of the astrophysical signals

Non-relativistic annihilation (or decay)

$$S \sim \left(\frac{\rho_{\rm DM}}{m_{\rm DM}}\right)^{2,1} \times \{\langle \sigma v \rangle, \Gamma\} \times \text{[energy spectrum]}$$

Relevant particle physics properties:

- Annihilation cross section (or decay rate)
- Mass of the DM particle
 BR in the different final states

1+2: Size of the signal 2+3: Spectral features Courtesy by N. Fornengo

First Detection of Antiparticles in the Cosmic Rays

•First detection of positrons in the cosmic radiation in 1964 by J.A. De shong, R.H. Hildebrand & P. Meyer Phys. Rev. Let. **12** (1964) 3

•First detection of antiprotons in the cosmic radiations in 1979 by R.L. Golden et al. Phys. Rev. Let. **43** (1979) 1196, and by E. Bogomolov et al., 16th ICRC (1979), Tokyo, Japan

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

Balloon data : Positron fraction before 1990

CR antimatter

Launch: 15 June 2006 – Stopped in January 2016

Quasi-polar elliptical orbit 70 degree inclination 350/610 km. Allows to measure low energy particles (70 MeV electrons)

Long flight duration: 10 years of data Allows to test model over different period of solar activity

Пуск РН «Союз-У» с КА «Ресурс-ДК1». 15 июня 2006 год.

The PAMELA instrument

24 bars of plastic scintillator arranged in six plane, S11, S12, S21, S22, S31, S32: velocity, absolute charge Z<8.

Six planes of double side microstrip silicon detectors inside a magnetic cavity: rigidity, absolute charge Z<6, charge sign.

44 planes of Si detector interleaved with 22 tungsten planes, 16.3 radiation length: hadron lepton separation.

GF: 21.5 cm2 sr Mass: 470 kg Size: 130x70x70 cm Power budget: 360 W

(CAS, CARD e CAT) nine planes of plastic scintillator around the apparatus: reject false triggers or multiparticle events.

36 proportional counters filled with 3He: improve hadron rejection.

PAMELA Results: Positrons

Vol 458|2 April 2009/doi:10.1038/nature07942 nature

LETTERS

An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV

O. Adriani^{1,2}, G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti^{6,7}, M. Boezio⁸, E. A. Bogomolov⁹, L. Bonechi^{1,2}, M. Bongi⁵, V. Bonvicini⁸, S. Bottai⁵, A. Bruno^{6,7}, F. Cafagna⁷, D. Campana⁴, P. Carlson¹⁰, M. Casolino¹¹, G. Castellini¹², M. P. De Pascala^{11,13}, D. De Rosa⁴, N. De Simone^{11,13}, V. Di Felice^{11,13}, A. M. Galper¹⁴, L. Grishantseva¹⁴, P. Hofverberg¹⁰, S. V. Koldashov¹⁴, S. Y. Krutkov⁹, A. N. Kvashnin⁵, A. Leonov¹⁴, V. Malvezzi¹¹, L. Marcelli¹¹, W. Menn¹⁵, V. V. Mikhailov¹⁴, E. Mocchiutti⁶, S. Orsi^{10,11}, G. Osteria⁴, P. Papini⁷, M. Pearce¹⁶, P. Picozza^{11,13}, M. Ricci¹⁷, S. B. Ricciarini², M. Simon⁵, R. Sparvol^{11,13}, P. Spillantini¹², Y. I. Stozhkov⁵, A. Vacchi⁸, E. Vannuccini², G. Vasilyev⁹, S. A. Voronov¹⁴, Y. T. Yurkin¹⁴, G. Zampa⁸, N. Zampa⁸ & V. G. Zverev¹⁴

- High energy: first clear evidence of increasing positron fraction above 10 GeV with respect to pure secondary production;
- Low energy: charge-dependent solar modulation

Electrons and Positrons

Positron Anomaly: AMS-02

Positrons vs Electrons

Electron spectrum favors the contribution of the positron-like source term at 95% confidence level However, this does not allow to discriminate between pulsar and DM contributions

P. Zuccon, MIAPP 2022

Positrons with AMS-02 upgrade

All Electron Spectrum (e⁻ + e⁺)

CALET \rightarrow no structure at 1.4 TeV

FERMI limits

R. Munini, CSN2 April 2022

All Electron Spectrum (e⁻ + e⁺)

Elettroni e Positroni Galattici

energy

1000

100

PAMELA: Antiprotons

PAMELA greatly increases the existing statistics significantly extending the observed energy range

PAMELA antiproton results vs BESS Polar & AMS-02: Agreement!

AMS-02 Antiprotons and Secondary Production

M. Boudaud et al., Phys. Rev. Res. 2 (2020) 023022

The Antiproton Excess

- The AMS antiproton excess was pointed out in 2016 by two independent groups (Cuoco, Krämer, Korsmeier and Cui, Yuan, Tsai, Fan)
- Both papers identified a small, but statistically significant excess (~4.5 σ)
- These papers made it clear that out-of-the-box GALPROP models could not explain the antiproton spectrum that had been observed by AMS

The Antiproton Excess

J. Heisig, M. Korsmeier, and M. W. Winkler, Phys. Rev. Res. **2** (2020), 043017: "We find that the global significance of the antiproton excess is reduced to below 1 σ once all systematics, including the derived AMS-02 error correlations, are taken into account. No significant preference for a dark-matter signal in the AMS-02 antiproton data is found in the mass range 10-10000 GeV.."

Do we understand propagation correctly?

Paolo Lipari arXiv:1902.06173, 16 Feb 2019

"Alternative" interpretation: the e⁺ flux is entirely of secondary origin, but its residence time in the Galaxy must be small than that usually inferred from CR nuclei

Antiprotons show a similar trend to positrons.

R. Munini, CSN2 April 2022

Recent proton spectrum measurements

PAMELA & AMS-02 Proton Spectrum

M. Martucci et al., ApJL 854 (2018)L2

Recent measurements of nuclei spectra: C, O & Fe

Background "free" Signals?

Antinuclei

WHY ANTI-DEUTERIUM? BACKGROUND

WHY ANTI-DEUTERIUM? SIGNAL

ANTIDEUTERON FLUX

 $\phi(\bar{D}) \propto < \sigma V >_{annihilitation} (\frac{\rho_{DM}}{M_{DM}})^2$ \otimes (cohalescence p₀)³ \otimes propagation

WHY ANTI-DEUTERIUM? SIGNAL

ANTIDEUTERON FLUX

 $\phi(\bar{D}) \propto < \sigma V >_{annihilitation} (\frac{\rho_{DM}}{M_{DM}})^2$ \otimes (cohalescence p₀)³ \otimes propagation

The GAPS experiment

International collaboration between US, Japanese, and Italian institutes

The GAPS experiment

- GAPS is a balloon flight experiment for low energy (<0.25 GeV/n) **antideuteron in cosmic rays** (CRs) that would result from certain dark matter (DM) interactions
- GAPS will also conduct a high statistics measurement of low energy **antiproton** and will search for **antihelium**
- Three flights from Antarctica are planned
- The detector is composed by a ToF system and a Tracker made of 10 plane of SiLi detector
- GAPS uses a detection technique based on exotic atom formation and subsequent decay and annihilation with X rays and pion emission

GAPS Detection Technique

energy deposition [MeV]

- antiparticle slows down and stops in material
- large chance for creation of an excited exotic atom (E_{kin}~E_I)
- deexcitation:

 fast ionization of bound electrons
 (Auger)
 → complete depletion of bound
 electrons
 Hydrogen-like exotic atom
 (nucleus+antideuteron)
 deexcites via characteristic X-ray
 transitions depending on
 antiparticle mass
- Nuclear annihilation with characteristic number of annihilation products

GAPS Instrument Overview

General requirements

- Large acceptance
- Restrictive trigger
- Velocity measurements
- Background rejection
 - X-rays detection
 - Track primary
 - Track secondaries

1 LDB flight (35 days) \rightarrow high-statistic antiP: >600 (BESS < 100, 7 PAMELA) 3 LDB flights (105 days) \rightarrow antiD sensitivity: $2 \cdot 10^{-6} m^{-2} s^{-1} sr^{-1} GeV/n^{-1}$

INFN

NASA

- 2 TOF Official
 2 TOF electronics
 box
 3 TOF Cortina
 4 TOF Cube
 5 Heat pipe
 (cooling system)
- 6 Si(Li) Tracker
- 7 Elèctronics bay
- 8 Gondola frame

GAPS TOF System

Velocity measurements

High speed trigger and veto

1.6-1.8m

dE/dx measurements

S. Quinn, POS (ICRC2019) 128

JAXA

Trigger based on:

- **Beta**: rejects high beta particles
- Charge: rejects high Z particles
- **Hit**: count the number of paddles hit

Expected Trigger Rates (H, He, C) Raw : 82,000 Hz \rightarrow After cuts ~ 500 Hz

Antiprotons Trigger	60%
Antideuterons Trigger	76%
Proton Rejection Factor	>2500

4 keV FWHM (at ~60 keV)

Leakage current < 5 nA/strip

GAPS Tracker system

Lithium-drifted Silicon

Large area, relatively high temperature

>1000 mass production with high-yield

Large dynamical range (~keV→100 MeV)

Novel heat-pipe system with low-power and

lightweight is used for the thermal control

Perez et al., NIM A 905, 12 (2018) Kozai et al., NIM A 947, 162695 (2019) Rogers et al., JINST 14, P10009 (2019) Saffold et al., NIM A 997, 165015 (2021) Manghisoni et al., IEEE Trans. Nucl. Sci. 68 (11) 2661 (2021) S. Okazaki et al., J. Astr., Instr. 3 (2014)

JAXA

R. Munini et al. Astropart. Phys. 133 (2021) 102640

Reconstructed event

Fully detector simulation with (GEANT4)

Vertex reconstruction based on:

• Kalman-like filter for primary reconstruction

INFŃ

NASA

JAXA

- Custom algorithm for secondaries
- Vertex reconstruction with minimization

R. Munini et al. Astropart. Phys. 133 (2021) 102640

Reconstructed event

GAPS identification technique uses:

- Energy loss in the detector of the antinucleus (depends on Z and β)
- Deexcitation X-rays from exotic atom
- Multiplicity of charged annihilation products

Antiproton measurement NASA JAXA GeV/n)⁻¹ AMS-02 energy range **Precision antiproton spectrum** 10^{-2} in unexplored low-energy range (<0.25 GeV/n). Galprop (conv. diff.) 0⁻³ ˈlux [(s m² BESS-Polar I d, BESS 97-00, 95% C.L. excl BESS-Polar II 10⁻⁻⁴ p. PAMELA >600 antiprotons for each D. AMS-02 p. GAPS 1 × LDB proj. long-duration balloon flight. 10⁻⁵ dark matter \overline{d} signal d GAPS BESS : 29 at ~0.2 GeV 10⁻⁶ 3 LDB proj, 3σ disc

 10^{-7}

10⁻⁸

10⁻⁹

10⁻¹⁰

>2 orders of

d, $\chi\chi \rightarrow bb$, 70GeV

GAPS energy range

10⁻¹

astrophysical \overline{d} background

d. secondary

d. tertiary

magnitude

INFN

10

kinetic energy [GeV/n]

- PAMELA: 7 at ~0.25 GeV
- AMS-02: E>0.25 GeV

Updated antiproton sensitivity will be published soon

Antideuteron sensitivity

GAPS antideuterons: A generic new physics signature with essentially zero conventional astrophysical background!

Sensitivity will be 1-2 orders of magnitude below the current best limits.

AntiHelium sensitivity

GAPS flux sensitivity to antihelium-3 (three 35-day long duration flights).

GAPS extends to lower energies (0.11-0.3 GeV/n), complementary to AMS-02.

Capable of confirming signal, orthogonal detection technique, uniquely low bkg.

INFŃ

NA SA

N. Saffold et al. Astropart. Phys. 130 (2021) 102580

AntiHelium: AMS02

2018: "To date, we have observed eight events...with Z = -2. All eight events are in the helium mass region." – S. Ting (La Palma, AMS overview)

P. Zuccon, MIAPP 2022

