Dark Matter in the Milky Way

Fabío Iocco

Università Federico II, NAPOLI

What is the actual distribution of DM in the Milky Way?

And most notably in the proximity of the Sun?

And in the Galactic Center, too? Please bear with me until the end.

Dark Matter in the Milky Way

> *Fabío Iocco* Università Federico II, NAPOLI

The Milky Way: literature credits

The origin of the Milky Way

[Jacopo Tintoretto, ca 1575. The National Gallery, London]

The origin of the Milky Way

[Peter Paul Rubens, ca 1636. Museo del Prado, Madrid]

Dark Matter Evidence over large range of scales

NATURE STILL UNKNOWN

A story of LCDM I: structure formation

age of Universe

A story of LCDM II. the single halo

A "universal" DM profile?

NAVARRO-FRENK-WHITE

 $\rho(R) \propto \frac{R_s}{R} \left(1 + \frac{R}{R_s}\right)^{-2}$

A story of LCDM III. the dark matter distribution

generalized NFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

What is the <u>actual</u> distribution of DM in the Milky Way?

And most notably in the proximity of the Sun?

And the Galactic Center, as requested. Please bear with me until the end.

Empirical determination of local DM density

1940 1960

1980

vear

2000

2020

20

Local determination of ρ_0

Vertical motion of stars in local region O(100pc) provides total Grav Pot Subtracting visible (stellar) contribution Obtain (or not) DM without assuming its presence

Inferring the whole DM distribution (MW's 'backbone')

Fitting a pre-assigned shape on top of luminous

[many autors, e.g. locco et al. 2011]

gNFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

 $\rho_{DM}(R) \propto \rho_0 \exp\left[-\frac{2}{\gamma} \left(\left(\frac{R}{R_s}\right)^{\gamma} - 1\right)\right]$
Einasto

Empirical determination of local DM density: recent determinations

[Benito, Iocco, Cuoco, PDU 2021, arxiV:2009.13523]

The case of the Milky Way Recipe for unifying data & formalism.

Ingredients:

- The observed rotation curve
- The "expected" rotation curve
- Some "grano salis"

• Working hypothesis (later on)

The Milky Way: observed rotation curve the tracers of the gravitational potential

The Milky Way: observed rotation curve the data: a new compilation

	Object type	$R \; [kpc]$	quadrants	# objects
	HI terminal velocities			
	Fich+ '89	2.1 - 8.0	1,4	149
	Malhotra '95	2.1 - 7.5	1,4	110 💍
	McClure-Griffiths & Dickey '07	2.8 - 7.6	4	70,415
	HI thickness method			O JISILI'C
	Honma & Sofue '97	6.8 - 20.2	- 0	A U13
	CO terminal velocities		e P	Tu
gas	Burton & Gordon '78	1.4 - 7.9	100 C	284
	Clemens '85	1.9 - 8.0	1 alle	143
	Knapp+ '85	$0.6 - 7_{9}8$	CILIC. 1	37 🔥
0	Luna+ '06	2.0 - 8.0	40	272
	HII regions	JOIL		$\mathcal{O}(\mathcal{V}) = \mathcal{O}(\mathcal{V})$
	Blitz '79	- 11.0	R	
	Fich+ '89	9.4 - 12.5	3	10^{5}
	Turbide & Moffat '93. CIOLL	11.8 - 44	3 110	5
	Brand & Blitz '93	621215.5	1.2.4	148
	Hou+ '09	3.5 - 15.5	$CO_{2,3,4}$	274
	giant molecular clouds	10		
	Hou+ '09	6.0 - 13.	1,2,3,4	30
	open clusters			
	Frinchaboy & Majewski '08 🔬	4.6 - 10.7	1,2,3,4	60
	planetary nebulae			
stars	Durand+'98	3.6 - 12.6	1,2,3,4	79
	classical cepheids			
	Pont+ '94	5.1 - 14.4	1,2,3,4	245
	Pont+ '97	10.2 - 18.5	2,3,4	32
	carbon stars			
	Demers & Battinelli '07	9.3 - 22.2	1,2,3	55
	Battinelli+ '13	12.1 - 24.8	1,2	35
masers	masers		,	
	Reid+ '14	4.0 - 15.6	1,2,3,4	80
	Honma+ '12	7.7 - 9.9	1,2,3,4	11
	Stepanishchev & Bobylev '11	8.3	3	1
	Xu+ '13	7.9	4	1
	Bobylev & Bajkova '13	4.7 - 9.4	1,2,4	7
			, ,	

[Iocco, Pato, Bertone, Nature Physics 2015] [Pato & FI, arXivV:1703.00020, Software X (2017)]

The Milky Way Rotation Curve as observed

All tracers, optimized for precision between R=3-20 kpc For more details on data treatment (as well as inclusion of different datasets) ... galkin compilation [Pato & FI, arXivV:1703.00020, Software X (2017)]

The Milky Way:

'expected' rotation curve

from visible (baryon) component

$$\Phi_{\mathsf{baryon}} = \Phi_{\mathsf{bulge}} + \Phi_{\mathsf{disk}} + \Phi_{\mathsf{gas}}$$

$$ho_i(x,y,z) o \phi_i(r, heta,arphi) o v_{c,i}^2(R) = \sum_arphi R rac{d\phi_i}{dr}(R,\pi/2,arphi)$$

Constructing the curve expected from observed mass profiles

The Milky Way: expected rotation curve the baryonic components

The luminous Milky Way: observations of morphology

2. BARYONS: ST	ELLAR BULGE	0	•	
	$ ho_{ m bulge} = ho_0 f(x)$,y,z)		
morphology $f(x, y, z)$				
Stanek+'97 (E2)	e^{-r}	0.9:0.4:0.3	24°	optical
Stanek+ '97 (G2)	$e^{-r_{s}^{2}/2}$	1.2:0.6:0.4	25°	optical
Zhao '96	$e^{-r_s^2/2}+r_a^{-1.85}e^{-r_a}$	1.5:0.6:0.4	20°	infrared
Bissantz & Gerhard '02	$e^{-r_s^2}/(1+r)^{1.8}$	2.8:0.9:1.1	20°	infrared
Lopez-Corredoira+ '07	Ferrer potential	7.8:1.2:0.2	43°	infrared/optical
Vanhollebecke+ '09	$e^{-r_s^2}/(1+r)^{1.8}$	2.6:1.8:0.8	15°	infrared/optical
Robin+ '12	${\rm sech}^2(-r_s)+e^{-r_s}$	1.5:0.5:0.4	13°	infrared

normalisation ρ_0 and its statistical uncertainties microlensing optical depth: $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$, $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ (MACHO '05) The luminous Milky Way: observations of morphology

2. BARYONS: STELLAR DISK

$$ho_{ ext{disk}}=
ho_0f(x,y,z)$$

morphology f(x, y, z)

Han & Gould '03	$e^{-R} \mathrm{sech}^2(z) \ e^{-R- z }$	2.8:0.27 2.8:0.44	$_{ m thin}$	optical
Calchi-Novati & Mancini '11	$e^{-R- z } e^{-R- z }$	2.8:0.25 4.1:0.75	thin thick	optical
deJong+ '10	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.75/2}$	2.8:0.25 4.1:0.75 1.0:0.88	thin thick halo	optical
Jurić+ '08	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.77/2}$	2.2:0.25 3.3:0.74 1.0:0.64	thin thick halo	optical
Bovy & Rix '13	$e^{-R- z }$	2.2:0.40	single	optical

normalization and its statistical uncertainties local surface density: $\Sigma_* = 38 \pm 4 M_{\odot}/pc^2$ [Bovy & Rix '13]

The luminous Milky Way: observations of morphology

uncertainties

CO-to-H₂ factor: $X_{\rm CO} = 0.25 - 1.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r < 2 \text{ kpc}$ $X_{\rm CO} = 0.50 - 3.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r > 2 \text{ kpc}$

[Ferrière+ '07, Ackermann '12]

The luminous Milky Way: expected rotation curve

$$egin{aligned} egin{aligned} \phi_i(r, heta,arphi) = -4\pi G \sum_{l,m} rac{Y_{lm}(heta,arphi)}{2l+1} \left[rac{1}{r^{l+1}} \int_0^r
ho_{i,lm}(a) a^{l+2} da + r^l \int_r^\infty
ho_{i,lm}(a) a^{1-l} da
ight] \end{aligned}$$

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The Milky Way: testing expectactions (with no additional assumption) ((and some technical detail))

Do the baryon-only curves fit with the observed RC?

Every single model above 5 σ , already at R<R₀!!

[Iocco, Pato, Bertone, Nature Physics 2015]

Inferring the DM density structure

Fitting a pre-assigned shape on top of luminous

[many autors, e.g. locco et al. 2011]

Systematic uncertainties (luminous component)

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017]

[Iocco, Pato, Bertone, Nature Physics 2015]

Extracting the DM density structure

What to do of our measurement? (Our instrument is very precise. Is it accurate?)

[Karukes, Benito, F.I., Geringer-Sameth, Trotta] arXiv:1901.02463

The Milky Way:

observed rotation curve Neglecting some quite remarkable uncertainties (for now)

$$v_{\text{LSR}}^{\text{l.o.s.}} = \left(\frac{v_c(R')}{R'/R_0} - v_0 \right) \cos b \sin \ell$$

observing tracers from our own position, transforming into GC-centric reference frame

> Uncertainties on (R0,v0) ultimately affects our determination of (rho0, gamma)

Profiling over Galactic uncertainties

Testing approaches

Please use the full likelihood: publicly available!!

Testing datasets

https://github.com/mariabenitocst/UncertaintiesDMinTheMW [Benito, Iocco, Cuoco, PDU 2021, arXiV:2009.13523]

Direct and indirect searches of WIMP DM complementary to colliders

Direct detection: DM scattering against nuclei, recoil

Indirect detection:

Annihilation in astrophysical envir. Observation of SM products of annih.

Production at LHC

Direct Detection: principles and dependencies (to go...)

you need this

dR $\overline{dE} \propto$ (v,t) $u^{\overline{2}}$,

Systematic uncertainties (luminous component)

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017]

[Iocco, Pato, Bertone, Nature Physics 2015]

Extracting the DM density structure

But do Galactic uncertainties affect PP, for real?

 $J_{annih} \propto \int_{los} \rho^2(r) dV$

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017, arXiv:1612.02010]

It is well known that uncertainties affect Direct Detection

2015 LUX limits, varying astrophysical uncertainties

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017, arXiv:1612.02010]

Let's quantify this effect in a specific case: Singlet Scalar DM

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

$$egin{aligned} v_H &= 246 ext{ GeV } \langle S
angle &= 0 \ m_S^2 &= 2\,\mu_S^2 + \lambda_{HS}\,v_H^2 \end{aligned}$$

"WIMP phenomenology" entirely dictated by the Higgs coupling and physical DM mass.

[Mc Donald, 1994] [Burgess, Pospelov, Velthuis, 2001]

Singlet Scalar DM Constraints and interplay of experiments

Singlet Scalar DM Constraints and interplay of experiments

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

Let's look at the effect of astrophysics uncertainties: Direct Detection

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

Let's look at the effect of astrophysics uncertainties: Direct Detection

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

Let's look at the effect of astrophysics uncertainties: Indirect Detection

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017; arXiv:1612.02010]

Galactic Center: a beast of its own

Total mass

 $M_{total} = (1.85 \pm 0.05) \times 10^{10} \,\mathrm{M_{\odot}}$

Portail + MNRAS 465 (2017) Stellar mass

 $\int_{V_{*}} \rho_{*}^{i}(x,y,z) \,\mathrm{d}V$ $M^i_* =$

[Iocco & Benito] PDU 15 (2017)

Methodology: Allowed DM mass

$$M_{\rm total} - M_*^{\rm i} = M_{\rm DM}^{\rm i}$$
$$\sigma_{\rm M_{\rm DM}} = \sqrt{\sigma_{\rm M_{\rm total}}^2 + \sigma_{\rm M_*^{\rm i}}^2}$$

 $M_* = (1.1 - 1.7) \times 10^{10} M_{\odot}$ $M_{\rm DM} = (0.1 - 0.7) \times 10^{10} M_{\odot}$

DM mass corresponds to 7-37%

gNFW density profile

$$\rho_{\rm DM}(r) = \rho_0 \left(\frac{R_0}{r}\right)^{\gamma} \left(\frac{R_s + R_0}{R_s + r}\right)^{3-\gamma}$$

Study parameter space that gives a mass in excess or defect with respect to the allowed DM mass

Galactic Bulge Region Results: varying bulge morphology

Allowed at 1σ
 Allowed at 2σ
 Excluded at 2σ

[Iocco & Benito, 2017] arXiv:1611.09861 (+ M. Benito's thesis)

Galactic Bulge Region and RC curve compatibility

$M_{\rm DM} = (0.32 \pm 0.05) \times 10^{10} \, {\rm M}_{\odot}$

"the dark matter density of our model has a [...] Portail + shallow cusp or a core in the bulge region" MNRAS 465 (2017) [Iocco & Benito, 2017] arXiv:1611.09861 (+ M. Benito's thesis)

Cuncta stricte

• Determining the local DM density from actual data is possible

- RC method is accurate and precise, in spite of large range of observational systematic and statistical uncertainties.
- Slope (i.e. full profile of MW) is not very accurate, and quite depending from several systematics. (Galactic Center region further complicated.)
- Astrophysical uncertainties are actually affecting determination of PP, in virtuous interplay with collider physics, direct and indirect probes.
- Providing a ready-to-use likelihood for PP use, including astrophysical uncertainties on DM distribution