Some Recent Progress & Challenges for Direct-Detection of Sub-GeV Dark Matter

Rouven Essig

Yang Institute for Theoretical Physics

Dark Pollica, June 6, 2022

Outline

- Some Recent Progress
- Sources of Low-Energy Backgrounds
- Diurnal Modulation
- New Detection Concepts
- Calibrating the Migdal Effect w/ Neutrons

Outline

- Some Recent Progress (includes update on SENSEI)
 - Sources of Low-Energy Backgrounds
 - Diurnal Modulation
 - New Detection Concepts
 - Calibrating the Migdal Effect w/ Neutrons

WIMPs

Hidden Sector DM

WIMPs

DM Scattering

need to probe nuclear <u>and</u> electron interactions

see e.g. Boehm & Fayet; Borodatchenkova, Choudhury, Drees; Kaplan, Luty, Zurek; Falkowski, Ruderman, Volansky; RE, Mardon, Volansky; Chu, Hambye, Tytgat; Hochberg, Kuflik, Volansky, Wacker; +Murayama; Izaguirre, Krnjaic, Schuster, Toro; RE, Fernandez-Serra, Mardon, Soto, Volansky, Yu; Kuflik, Lorier, Perelstein, Tsai; Farina, Pappadopulo, Ruderman, Trevisan; D'Agnolo, Ruderman...

several DM production scenarios (e.g. freeze-out, asymmetric, freeze-in, SIMP, ELDER)

Significant progress in probing sub-GeV dark matter

- Theory:
 - several detection concepts, using variety of target materials
 - improved calculations of DM scattering in crystals
 - improved understanding of low-energy backgrounds

Many Detection Concepts

• DM scattering: $m_{\chi} \gtrsim \text{keV}$

Figs from US DOE Basic Research Needs report 2018 (slightly outdated)

Many Detection Concepts

- DM scattering: $m_{\chi} \gtrsim \text{keV}$
- (bosonic) DM absorption: $m_{\gamma} \gtrsim \text{meV}$

Figs from US DOE Basic Research Needs report 2018 (slightly outdated)

Main concepts currently used to probe DM \ll GeV

Migdal; Vergados & Ejiri; Bernabei; Ibe, Nakano, Shoji, Suzuki

Allows transfer of O(1) amount of DM kinetic energy

$$E_{\rm kin} = \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 \sim 1 \ {\rm eV} \left(\frac{m_{\rm DM}}{500 \ {\rm keV}}\right) \qquad (v_{\rm DM}^{\rm max} \sim 2 \times 10^{-3})$$

Typically produces a signal of only <u>one</u> to a <u>few electrons</u>

Spectrum of electrons produced by DM scattering

in both cases, have a sharply rising spectrum towards lower energies: single/few-electron sensitivity is crucial for capturing more potential DM events

Spectrum of electrons produced by DM scattering

various theory improvements for calculating scattering rates in crystals, e.g.

relate rates to electron loss function of crystal; crystal form factors for general DM-electron interactions; include all electrons (not only valence)

Knapen, Kozaczuk, Lin (2101.08275, 2104.12786); Hochberg, Kahn, Kurinsky, Lehmann, Yu (2101.08263) Catena, Emken, Matas, Spaldin, Urdshals (2105.02233) Griffin, Inzani, Trickle, Zhang, Zurek (2105.05253) Dreyer, RE, Fernandez-Serra, Singal, Zhen (to appear)

Theory uncertainties are being evaluated

DM-electron scattering Dreyer, RE, Fernandez-Serra, Aman Singal, Cheng Zhen (in progress)

theory uncertainties are not zero, but are under control

Significant progress in probing sub-GeV dark matter

- Theory:
 - several detection concepts, using variety of target materials
 - improved calculations of DM scattering in crystals
 - improved understanding of low-energy backgrounds
- Experiments: multiple technologies can measure small signals, e.g.
 - Xe/Ar 2-phase TPC (XENON10/100/1T/nT, LZ, DarkSide, ...)
 - Phonon/heat sensors (SuperCDMS, EDELWEISS, CRESST, TESSERACT)
 - Skipper-CCDs (SENSEI, DAMIC-M, Oscura)

Exciting experimental progress: DM-electron scattering

2022

heavy mediator

Exciting experimental progress: DM-electron scattering

2022

Exciting experimental progress: DM-nucleus scattering

heavy mediator

e⁻ produce scintillation light

XENON10/100/1T, DarkSide

Calorimeter (e.g. TES)

e⁻ produce scintillation light

XENON10/100/1T, DarkSide

Phonon Sensors

Calorimeter (e.g. TES)

e⁻ produce scintillation light

XENON10/100/1T, DarkSide

Phonon Sensors

Calorimeter (e.g. TES)

e⁻ produce scintillation light

 e⁻ & h⁺ drift in E-field, emitting phonons

XENON10/100/1T, DarkSide

SuperCDMS, EDELWEISS

TESSERACT (proposed project)

Transition Edge Sensors with Sub-EV Resolution And Cryogenic Targets

Goal: use multiple target materials + advances in TES sensor technology

Liquid helium experiment (HeRALD) GaAs and Sapphire-based experiments (SPICE) R&D funded by US DoE

Info & Figure from: https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1_CF2-IF1_IF8-120.pdf

SENSEI: Detection concept

DM would create <u>one</u> or a <u>few</u> electrons in a pixel

 $\sim 2 \text{ cm} \times 10 \text{ cm}, 5.4 \text{ Mpix}$

designed at LBNL and fabricated at Teledyne DALSA Semiconductor

The SENSEI Collaboration

UNIVERSITY OF OREGON

Liron Barak Yonathan Ben Gal Itay Bloch Erez Etzion Yaron Korn Aviv Orly Tomer Volansky Ana Botti Gustavo Cancelo Fernando Chierchie Michael Crisler Alex Drilca-Wagner Juan Estrada Guillermo Fernandez Miguel Sofo-Haro Leandro Stefanazzi Javier Tiffenberg Sho Uemura

HEISING-SIMONS FOUNDATION Prakruth Adari Luke Chaplinsky Dawa Ansh Desai Daniel Gift Rouven Essig Sravan Munagavalasa Aman Singal

Tien-Tien Yu

Mariano Cababie Dario Rodrigues lan Lawson Silvia Scorza Steffon Luoma

SENSEI Detector Setup @ Fermilab

- ~100 m underground to reduce muons
- some extra lead shielding to reduce radiation
SENSEI Limits

RE, Mardon, Volansky, 2011 Chu, Hambye, Tytgat, 2011 RE, Fernandez-Serra, Soto, Mardon, Volansky, Yu 2015 Dvorkin, Lin, Schutz, 2019

SENSEI@SNOLAB

- Phase 1 system taking data @ SNOLAB
- Current steps: understand data, build up detector mass to ~100 gram

Projections

- SENSEI: ~100 gram (SNOLAB)
- DAMIC-M: ~1 kg (Modane)
- Oscura: 10 kg (R&D funded)

Rapid progress in probing many hidden-sector DM models!

[projections for some other models in backup]

The challenges ahead for low-mass DD

Significant recent progress, but much remains to be done

[order does not imply relative importance]

- Understand and mitigate (novel) low-energy backgrounds
 e.g., origin of few-electron events in SENSEI & SuperCDMS?
- 2. Develop new signals for DM
 - e.g., diurnal modulation
- 3. Develop new DM detection concepts
 - e.g., Quantum Dots, Doped Semiconductors
- 4. Calibrate DM signals and low-energy backgrounds
 - e.g., observe & calibrate Migdal effect w/ neutrons
- 5. Sharpen theory predictions for DM signals (e.g., secondary ionization modeling)
- 6. Increase target mass of "proven" detector technologies
- 7. Lower energy thresholds to probe sub-MeV DM

Remainder of Talk

Outline

- Some Recent Progress
- Sources of Low-Energy Backgrounds
 - Diurnal Modulation
 - New Detection Concepts
 - Calibrating the Migdal Effect w/ Neutrons

All sub-GeV DM experiments see "excess" low-energy events

e.g., detectors that measure ionization

Fig from EXCESS workshop paper, 2202.05097

If origins of these events are not understood, it would severely limit sensitivity to sub-GeV DM (radioactive backgrounds expected to be ~flat)

All sub-GeV DM experiments see "excess" low-energy events

We have now identified a major contribution to these "excesses" at SENSEI and SuperCDMS HVeV

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

Image from SENSEI

• many $1e^-$ events

Image from SENSEI

• many $1e^-$ events

From data:

- 1e⁻ events are correlated in position w/ high-energy tracks
- rate correlated with shield thickness

Sources of low-energy events

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

Radioactivity & cosmic-ray muons can produce $\underline{many} O(eV)$ photons, by e.g.

- Cherenkov radiation
- Radiative recombination
- Transition radiation*

Photons get absorbed in sensor to produce an electron

 \sim 100s of tracks/g-day at SENSEI, \sim 10 thousand /g-day at SuperCDMS HVeV

SENSEI, 2004.11378

CCD module Du, Egana-Ugrinovic, RE, Sholapurkar, 2011.13939

Du, Egana-Ugrinovic, RE, Sholapurkar, 2011.13939

SENSEI, 2004.11378

- Cherenkov from tracks produces photons w/ $E_{\gamma} \lesssim 4 \ {\rm eV}$

Du, Egana-Ugrinovic, RE, Sholapurkar, 2011.13939

 $\ell_r \, [\mu \mathrm{m}]$

SENSEI, 2004.11378

Side view Vacuum 2380 µm CCD Pitch adapter 675 μm module Epoxy 75 µm **Skipper CCD** 675 μm 255 µm CCD-backside layer with high Copper phosphorus doping (6 µm) $\omega_{\rm max}$ [eV] 1.245 1.23 1.28 1.22 1.215 1.21 $E_k = 250 \text{ keV}$ $E_k = 500 \text{ keV}$ $N_{\gamma}(\text{per electron track})$ 60 pixels υ 30 pixels pixels 200 800 400 600 1000 1200

- Cherenkov from tracks produces photons w/ $E_{\gamma} \lesssim 4 \ {\rm eV}$
- Photons w/ energy closer to Si bandgap (~1.2 eV) travel further — explains correlation w/ high-energy tracks

SENSEI, 2004.11378

Du, Egana-Ugrinovic, RE, Sholapurkar, 2011.13939

- Cherenkov from tracks produces photons w/ $E_{\gamma} \lesssim 4 \ {\rm eV}$
- Photons w/ energy closer to Si bandgap (~1.2 eV) travel further — explains correlation w/ high-energy tracks
- Radiative recombination only important in a thin layer of highly-doped Si on CCD backside

Detailed simulation for SENSEI is in progress...

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, to appear

10⁴

Absorption Length [µm] 00 00

100

10

0

SENSEI simulation of $1e^-$ events (preliminary)

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, to appear

SENSEI data

simulated electron/muon tracks simulated electron/muon tracks + Cherenkov + Recombination

Current conclusion: Cherenkov dominates over recombination; contributes $\mathcal{O}(1)$ to observed 1e events, but does not explain all...

SuperCDMS $2e^-$ to $6e^-$ events: likely dominated by Cherenkov

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

SuperCDMS, 2005.14067

SuperCDMS $2e^-$ to $6e^-$ events: likely dominated by Cherenkov

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

Side view

Veto detector Plastic connector upper PCB — Gopper vessel

SuperCDMS, 2005.14067

- Cherenkov from, e.g., "printed circuit board" ("PCB") produces <u>many</u> O(eV) photons
- a simple model can explain spectrum & rate, assuming every photon is absorbed in detector with an efficiency $f\sim 0.0016$
- detailed sim is needed

4067

Implications

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

- Dielectric materials in experiments are common (holders, cables etc): need careful evaluation of backgrounds!
 - important for SENSEI, DAMIC-M, Oscura, SuperCDMS-HVeV, SuperCDMS SNOLAB, optical haloscopes, scintillators...

Implications

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

- Dielectric materials in experiments are common (holders, cables etc): need careful evaluation of backgrounds!
 - important for SENSEI, DAMIC-M, Oscura, SuperCDMS-HVeV, SuperCDMS SNOLAB, optical haloscopes, scintillators...

SuperCDMS SNOLAB detector

Radioactive impurities in Cirlex in SuperCDMS SNOLAB detectors produce \sim 50,000 β -decays/year that can produce Cherenkov... need careful simulation of how many can be vetoed

Implications

Peizhi Du, Daniel Egana-Ugrinovic, RE, Mukul Sholapurkar, 2011.13939

- Dielectric materials in experiments are common (holders, cables etc): need careful evaluation of backgrounds!
 - important for SENSEI, DAMIC-M, Oscura, SuperCDMS-HVeV, SuperCDMS SNOLAB, optical haloscopes, scintillators...
- Backgrounds could also limit coherence times of superconducting qubits
- Fortunately, can mitigate these backgrounds! [see backup slide; e.g., better shield reduces these backgrounds]

(Note: excesses at e.g. CRESST-III, EDELWEISS, SuperCDMS-CPD have another origin)

Outline

- Some Recent Progress
- Sources of Low-Energy Backgrounds
- Diurnal Modulation
 - New Detection Concepts
 - Calibrating the Migdal Effect w/ Neutrons

Effects from DM scattering in Earth

Effects from DM scattering in Earth

Diurnal modulation

Effects from DM scattering in Earth

Diurnal modulation

How deep is a laboratory in Earth's 'shadow'?

$$\Theta(t) = \arccos\left[\frac{\mathbf{v}_{\oplus}(t) \cdot \mathbf{x}_{\text{lab}}^{(\text{gal})}(t)}{v_{\oplus}(t)(r_{\oplus} - d)}\right]$$

 $\Theta = 0^{\circ} \implies \mathsf{DM}$ wind from above

$$\Theta = 180^{\circ} \implies$$
 Shadow

J.I. Collar, F.T. Avignone, Phys. Lett. B275 (1992), 181-185 J.I. Collar, F.T. Avignone, PRD 47 (1993), 5238-5246 Hasenbalg et al., PRD 55 (1997), 7350-7355

Diurnal modulation in current sub-GeV DM searches

Bertou, Emken, RE, Sofo-Haro, Tiffenberg, Volansky, Yu work in progress

consider two locations: FNAL (USA) & Bariloche (Argentina)

more "stopping" at Bariloche than at FNAL

seeing a modulation at two different laboratories would be striking

How important for current+upcoming Sub-GeV DM experiments?

- Consider DM interacting w/ a dark-photon
- Hierarchy between nuclear and electron scattering:

$$\frac{\sigma_p}{\sigma_e} = \left(\frac{\mu_{\chi p}}{\mu_{\chi e}}\right)^2 \approx \left(\frac{m_{\chi}}{m_e}\right)^2$$

for $m_e \ll m_\chi \ll 1~{\rm GeV}$

How important for current+upcoming experiments?

Bertou, Emken, RE, Volansky, Yu work in progress

important for current results, especially at low DM masses

diurnal modulation provides discovery opportunity! (or improved constraints)

Example of Diurnal Modulation in current searches

Projected reach from modulation search

Bertou, Emken, RE, Volansky, Yu work in progress

Outline

- Some Recent Progress
- Sources of Low-Energy Backgrounds
- Diurnal Modulation

- New Detection Concepts
 - Calibrating the Migdal Effect w/ Neutrons

Dark Matter Detection w/ Quantum Dots

Blanco, RE, Fernandez-Serra, Ramani, Slone, to appear soon

Quantum Dot: few-nm diameter semiconductor crystals (~100 to 100,000's of atoms), suspended in solution

DM-electron interaction in QD produces one or more excitons

Multi-exciton can decay via two-photon emission

low threshold, easily scalable

Example setup: 2 PMTs search for two-photon coincident signal

Dark Matter Detection w/ Quantum Dots

Blanco, RE, Fernandez-Serra, Ramani, Slone, to appear soon

10 g: 1 L colloidal suspension 100g: 10 L colloidal suspension

even w/ "high" PMT background rate, can quickly achieve competitive sensitivity to other proposals

single-photon detectors w/ less background could do even better

discussions between Carlos and J. Collar have been encouraging!

ask Carlos and Oren for more details!

Dark Matter Detection w/ Doped Semiconductors

Du, Egana-Ugrinovic, RE, Sholapurkar, in progress

Dark Matter Detection w/ Doped Semiconductors

Du, Egana-Ugrinovic, RE, Sholapurkar, in progress

like for other proposals, it will be important to control backgrounds

preliminary ideas for design include a CCD w/ a dopedsemiconductor bulk, and which can read both holes and electrons

work in progress Du, Egana-Ugrinovic, RE, Fernandez-Moroni, Sofo-Haro, Tiffenberg, Uemura

Outline

- Some Recent Progress
- Sources of Low-Energy Backgrounds
- Diurnal Modulation
- New Detection Concepts

Calibrating the Migdal Effect w/ Neutrons
Constraints on sub-GeV DM-nucleus scattering dominated by Migdal effect

But Migdal effect has not been observed in the laboratory! Measurements in a controlled setting crucial to validate DM searches

Migdal calibration in silicon and xenon

Idea: optimize neutron energies & scattering angles in setup usually used for measuring ionization efficiency

Challenge: Migdal signal is much smaller than signal from neutron elastic scattering

However, Migdal event produces a bit more ionization!

Migdal vs elastic in Si

Duncan Adams, D. Baxter, Hannah Day, RE, Y. Kahn in progress

50

Migdal vs elastic in Si

Duncan Adams, D. Baxter, Hannah Day, RE, Y. Kahn in progress

Migdal vs elastic in Xe

Duncan Adams, RE, B. Lenardo, J. Lin, R. Mannino, J. Xu in progress

$$E_n = 14$$
 MeV, 17°

hoping for first measurements later this year...

Summary

- Significant theory and experimental progress:
 - many detection concepts w/ various targets
 - improved calculations of DM scattering in e.g. crystals
 - several experiments can now probe small DM signals
- Improved understanding of low-energy backgrounds
- Diurnal modulation is expected for current experiments in popular sub-GeV DM models
- Quantum dots and doped semiconductors are promising new targets to probe low-mass DM
- Expect Migdal effect calibration in Xe and Si in 1 to 2 years