Lemma muon collider

Particle physics is not validation anymore, rather it is exploration of unknown territories *

Andrea Wulzer - 6.09.2018

Why a Muon Collider? * PROs:

Why a Muon Collider? *** PROs:** * Muons are ~200 times heavier than electrons:

*** PROs:**

Muons are ~200 times heavier than electrons:
Accelerator:

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e+e- colliders) → much higher energies are reachable (~3TeV in 4km circ.)

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e+e- colliders) → much higher energies are reachable (~3TeV in 4km circ.)
 - Much smaller energy spread of the beam much higher energy resolution
 - Precise measurements and access to new resonances

*** PROs:**

- * Muons are ~200 times heavier than electrons: Accelerator:
 - No synchrotron radiation (limit of circular e+e- colliders) → much higher energies are reachable (~3TeV in 4km circ.)
 - Much smaller energy spread of the beam much higher energy resolution
 - Physics:
 - Higgs coupling $\propto m^2$

Precise measurements and access to new resonances

Much bigger production of Higgs boson (also s-channel)

Why a Muon Collider? * CONs:

Why a Muon Collider? * CONs: * Muons decay in 2.2µs!

The whole chain (generation, a quick!

The whole chain (generation, acceleration, interaction) must be very

Why a Muon Collider? * CONs:

- * Muons decay in 2.2µs!
 - The whole chain (generation, a quick!

Cooling needed!

The whole chain (generation, acceleration, interaction) must be very

• Main idea : muons from direct m pair production:

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at $\int s$ around the m⁺m⁻ threshold ($\int s \approx 0.212 GeV$) in asymmetric collisions (to collect m⁺ and m⁻)

M. Antonelli and P. Raimondi, Snowmass Report (2013) also INFN-13-22/LNF Note

Direct muon production

 $\sigma(e^+e^-\rightarrow\mu^+\mu^-)$

From e⁺ source to ring:

- e- on conventional Heavy Thick Target (TT) for e+epairs production
 - possibly with γ produced by e+ stored beam on T
- Adiabatic Matching Device (AMD) for e+ collection
- Acceleration (linac / booster), injection

From e⁺ source to ring:

- ▷ e⁻ on conventional Heavy Thick Target (TT) for e⁺e⁻ pairs production
 - possibly with γ produced by e+ stored beam on T
- Adiabatic Matching Device (AMD) for e+ collection
- Acceleration (linac / booster), injection

<u>e+ ring:</u>

A 6.3 km 45 GeV storage ring with target T for muon production

From e⁺ source to ring:

- e- on conventional Heavy Thick Target (TT) for e+epairs production
 - possibly with γ produced by e+ stored beam on T
- Adiabatic Matching Device (AMD) for e+ collection
- Acceleration (linac / booster), injection

<u>e+ ring:</u>

A 6.3 km 45 GeV storage ring with target T for muon production

From µ+µ- production to collider:

- Produced by the e+ beam on target T with $E(\mu) \approx 22 \text{GeV}, \gamma(\mu) \approx 200 \rightarrow \tau_{\text{LAB}}(\mu) \approx 500 \mu \text{s}$
- Accumulation Ring: 60m isochronous and high momentum acceptance for µ recombination
- Fast acceleration
- Muon collider

e+ ring parameter	unit	valı
Circumference	km	6.3
Energy	GeV	45
bunches	#	10
e+ bunch spacing = Trev (AR)	ns	20
Beam current	mA	24
N(e+)/bunch	#	3 • 10
Uo	GeV	0.5
SR power	MW	12

(also 28 km foreseen to be studied as an option)

NOT FOR FREE

muon production by positron beam impinging on a target. Why it is difficult....

- 1) Cross section , not enough (max $1 \mu b$)
- 2) bremsstrahlung, high Z->Z²
- 3) multiple scattering in target (Sqrt (X0))
- 4) PEDD and target heating
- 5) Available positron sources
- 6) 45 GeV positrons Sync Power

KEY ISSUES

	Challenges	Solutions		
μ production	Target average power [material, shape, heat matching, average e ⁺ current on target]	Multiply N of targets to distribute average deposited energy		
	Instantaneous PEDD [material, shape, bunch charge, e ⁺ spot on target]	Increase σ on target (increase $\epsilon_{\rm m}!).$ Develop solid R&D program		
	Integrated PEDD [material and shape, thermomechanical wave evacuation and matching, bunch charge and σ on target, time interval between bunches]	Increase σ on target (increase ϵ_m !). Increase interval between 2 e ⁺ beam passages (μ lifetime!)		
μ beam	μ emittance [e ⁺ emittance and energy on target, target material and thickness (multiple scattering), μ production angle]	Preserve e ⁺ beam 6D characteristics @ targets. Optimize target thickness and material		
	μ bunch intensity [cross section, material, e ⁺ beam energy and charge, target thickness]	Increase N of μ bunches produced/cycle and/or multiple μ production lines.		
	μ beam recombination [recombination scheme, μ lifetime, e^ beam charge]	Multivariable optimization of effect of the target (thickness, material, spacing, number)		
e⁺ beam	Intensity and losses [i nteraction with target, ring acceptance, injection, positron source intensity]	Use of "fresh" bunches. Re-use of "spent" bunches. Embedded et source		
	Source [target, N of sources, injection cycles for e ⁺ damping]	Re-use of "spent" bunches. Multiply embedded e⁺ source. Damping Ring		
	Emittance at the target [interaction with target, storage ring and cooling time]	Minimize N of bunch-target interactions per production cycle before cooling. Use "fresh" bunches		
	Ring synchrotron power [very high energy]	Increase ring circumference, reduce beam current or reduce et ring energy		

Cycles

		2 damping time 80ms		300 μs		20ms		2 damping time 80ms
Positron source	Stand by		Stand by		Positron generation	1000 bunch, 3 exp 10/bunch, 0,24 mA	Target cooling	
Injection Linac	Stand by		Injection from the embedded source	1000 bunch, 2 exp 10/bunch, 10 mA	Injection from the natural source	1000 bunch, 3 exp 10/bunch, 0,24 mA	Stand by	
Positron ring	Cooling	1000 bunch, 5 exp 11/bunch, 11kHz, 0.88 A	Extraction to the muon production lines		Top up injection	1000 bunch, 4,5 exp 11/bunch,	Cooling	1000 bunch, 5 exp 11/bunch, 11kHz, 0.88 A
Muon accumulator	Stand by		Muon generation	1 bunches mu+/-, 10exp9/bunch,~1MHz, 300mA	Extraction to post acceleration		Target cooling	
Recuperation LINAC	Stand by		Positron beam energy compression	1000 bunch, 4.5 exp 11/bunch, 240 mA	First post acceleration	2 bunches mu+/-, 10exp9/bunch,	Stand by	
Embedded source	Stand by		Positron generation	1000 bunch, 2 exp 10/bunch, 10 mA	Target cooling		Target cooling	

	Positron Ring	1000 bunch, 5 exp 11/bunch, 11kHz, 0.88 A, 90-110 MW@ 2 damping time
	Injection LINAC	5 10exp14/s@45GeV. 80mA - 3,5 MW
AVERAGE	Positron source	3 10exp14/s@300MeV. 48mA - 14,5kW
	Embedded source	2 10exp14/s@300MeV. 32mA - 9,5kW
	Muon Accumulator	2 10exp9/bunch,~3MHz, 1mA x 0,003 = 3mA 22.5 GeV. No damping
	Recuperation LINAC	4.5 exp 15/s, ~720mA@3GeV, 2,15 MW

Multi-IP Beamline

- Many different multi-IP beamline optics (need to split the power on target)
- Multi-IP beamline optics is made of regular unit cells where targets are placed at the beginning and at the end of each cell.
- Three beams will pass through this beamline: e⁺, $\mu^{+},\,\mu^{-}$

[O.Blanco, P.Raimondi, M Boscolo]

Beam Separation-Combination, Mar/2019

[P.Raimondi, O.Blanco, M.Boscolo]

Single-IP: Carbon and Hydrogen vs Beryllium

Hydrogen:

- Additional factor 2 muons produced for the same X_0 with Hydrogen
- reduced multiple scattering
- Issue: target feasibility

Carbon:

- For the same fraction of radiation length, Carbon produces -25% muon pairs
- Increased multiple scattering
 - much suppressed with crystal in channeling
- Easier from target point of view

Ee+	N	L	Ltot		Mat	eff
GeV		mm	mm	XO		10 ⁻⁷ µ/e+
45	10	3	30	0,085	Be	5,1
45	5	3,2	16	0,085	С	3,8
45	7	3,2	22,4	0,089	C A412	4,0

Positron Ring

- The 45 GeV positron ring has a small emittance, mostly round beams, and should accommodate the 1000 bunches/5x10¹¹ e⁺ needed for the muon production
- The present layout is for a 27 Km long ring
- Several lattices have been designed with emittance ranging from 700 pm to 20 nm for a 27 Km ring
- The choice of the final lattice will be based on the larger energy acceptance since it is mandatory that possibly all the "spent" beam from the muon production be successfully re-injected in the PR to be later decelerated and re-injected in the DR for cooling.
- 100 km solution will increase the luminosity of at least a factor 3.5

A possible accelerating structure as taken from XFEL TDR

t/2

Figure 4.2.1: Side view of the nine-cell cavity with the main power coupler port (right), the pick up probe (left), and two HOM couplers.

Eacc=20 MV/m SW short range wf should be ok as TW 1 cavity=9 cells 1 cryomodule= 8 cells

From L3 Xfel.xls= 2cryomod-quad-2cryomod

Pill box cavity model considered for the wake feld calculations: a is the iris radius, L is the cell length. The asymptotic values of the longitudinal and transverse wake functions have been calculated according to K. Bane SLAC{PUB{7862 (Revised) November 1998 with a=3.2 mm)

C.Vaccarezza, D.Alesini

Embedded source

• For each positron on the primary Be target there are:

0.11 photons hitting the tungsten target

0.65 e+ coming out of the 5 X0 tungsten target

- To estimate the number of collected positrons the number of e+ within the following cuts have been evaluated
- For 5 X₀ target thickness 11% of the positrons are within the cuts, corresponding to a yield of 0.07
- Giotto simulation 15%.

F.Collamati

Multi-turn simulations

before target, starting point

after 40 turns

MAD-X PTC & GEANT4 6-D tracking simulation of e+ beam with **3 mm Be** target along the ring (not at IR center in this example)

Muons' emittance

 $\epsilon(\mu) = \epsilon(e^+) \oplus \epsilon(MS) \oplus \epsilon(rad) \oplus \epsilon(prod) \oplus \epsilon(AR)$

ε(e+) = e+ emittance ϵ (MS) = multiple scattering contribution ε(rad) = energy loss (brem.) contribution ε (prod) = muon production contribution ε(AR) = accumulator ring contribution

Now: $\varepsilon(\mu)$ dominated by $\varepsilon(MS) \oplus \varepsilon(rad) \rightarrow lower D \& \beta s @ target with beam spot at the limit of target survival$ Also test different materials:

- **Crystals** in channeling: better $\varepsilon(MS)$, $\varepsilon(rad)$, $\varepsilon(prod)$

would like all contributions of same size. knobs:

βx, βy @target & target material βx, βy, Dx @ target & target material E(e+) & target thickness **AR optics & target**

• Light liquid jet target: better $\epsilon(MS)$, $\epsilon(rad)$ and gain in lifetime & target thermo-mechanical characteristics

• How we can recombine same charge muons beams in the same phase space?

- 1) We must 'defeat' the Liouville theorem
- ARE WE BEATING LIOUVILLE'S THEOREM? A.G.Ruggiero :
- If the beam is made of a finite number of particles, there are large empty regions surrounding the image points of the space). There is no reason and no limitation in principle why one cannot fill up these empty regions with more particles if one can find a way. The Liouville theorem would certainly not be contradicted. The question is how it is technically possible to add more particles without perturbing the motion of those that are already there.
- WE NEED an angular filter. An element that in the same point deflect particles arriving at an angle and leave unperturbate particles arriving with a different angle

• Curved Crystal (at net of the diffusion terms)

Main Idea

- We need to measure the muon dynamical state (Energy and Transverse momentum) before and after interaction with the crystals.
- 1) Curved crystal. Not possible to work with two syncro muons beams, so work with a single beam moving the crystal.

measurement - Bent crystal

- Deflection efficiency for μ^+ and μ^- . Initial and final P_+ and E for channeled and unchanneled particles. Initial and final P_+ and E for the unchanneled mode (crystal rotated).

LAYOUT

This is an experiment not concerning only muons. It takes into account violation of the fundamental theorem of accelerator (and statistical) physics