DARWIN @ LNGS The Low-Background

Low-Threshold Observatory

Marc Schumann U Freiburg on behalf of the DARWIN collaboration

erc

Scientific Committee Meeting LNGS, October 21, 2019

ARWIN

marc.schumann@physik.uni-freiburg.de
www.app.uni-freiburg.de

www.darwin-observatory.org

Direct Detection Today

some results are missing...

Direct Detection Today

some results are missing...

DARV

Dual-Phase LXe TPC

Annual Modulation Searches

dark matter-electron scattering
 2-phase LXe TPCs operated stably over long periods XENON100: 4 years LUX: 2 years XENON100: 4 years XENON117: 2 years
 challenges DAMA/LIBRA XENON100: 5.70 LUX: 9.20

DAR\

Xe XENON Low-Mass Results

Dark Matter Project arXiv:1907.11485

arXiv:1907.12771

Upcoming Projects

DARW

The ultimate Limit

The ultimate Limit

The ultimate Limit

some results are missing...

DARWIN The ultimate WIMP Detector

DARWIN

DARWIN The ultimate WIMP Detector

DARWIN

DARWIN Collaboration

- international collaboration, 26 groups, ~160 scientists
 - → continuously growing
- most XENON plus new groups
- endorsed by several national and international agencies

DARWIN Backgrounds

pp+⁷Be neutrinos → ER signature high-E neutrinos → CNNS bg → NR signature

Remaining background sources: – Neutrinos (\rightarrow ERs and NRs) – Detector materials (\rightarrow n) – Xe-intrinsic isotopes (\rightarrow e⁻) (assume negligible µ-induced background)

JCAP 10, 016 (2015)

Electronic Recoils (gamma, beta)

Nuclear Recoils (neutron, WIMPs)

only single scatters

Water Shield @ LNGS

Full MC Simulation for 3600 mwe

- external γ, n background irrelevant after >2.5m
- critical: μ -induced neutrons of high energy
- studied several water shield geometries between XENON and Borexino tank
- 12m tank: ~0.4 n/(200 t×y) Borexino: <0.05 n/(200 t×y)</p>
- Gd-loaded water further reduces numbers

LXe: Krypton Removal

DARWIN goal: 0.03 ppt (~ 0.1 × pp-neutrinos)
 removal by cryogenic distillation

LXe: Radon Background

Strategy DARWIN

- avoid Rn emanation by
- \rightarrow optimal material production
- → material selection
- → surface treatment
- → optimized detector design
- active Rn removal via cryogenic distillation

XENON1T distillation column installed @ XENON100

- → demonstrated reduction factor >27 (@ 95% CL)
- → dedicated column developed for XENONnT

ER Background Rejection

Charge-Light-Ratio (S2/S1): Signal partition in light/charge depends on dE/dx → the interaction type		Edrift [kV/cm]	LY @ 122 keV [PE/keV]	NR acc [%]	ER rej [%]
	XENON100	0.53	3.8	40	2.5×10 ⁻³
	XENON100	0.53	3.8	30	1×10 ⁻³
	LUX	0.18	8.8	50	110×10 ⁻³
→ high light yield should improve rejection level	XENON1T	0.125	~7.5	50	2.5×10 ⁻³
	ZEPLIN-III	3.4	4.2	50	1.3×10 ⁻⁴
	K. Ni APP14	0.2-0.7	10	50	<1×10 ⁻⁴

DARW

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent Phys.Dark Univ. 9-10, 51 (2015)
 - \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

WIMP Detection

Backgrounds from JCAP 10, 016 (2015)

DARWIN

DARWIN: Science Channels

Nuclear Recoil Interactions

spin-independent (S1-S2, charge-only)
 spin-dependent

WIMP dark matter JCAP 10, 016 (2015)

- → complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E)
 - supernova neutrinos
 JCAP 1611, 017 (2016)

PRD 89, 013011 (2014), PRD 94, 103009 (2016)

DARWIN ER Background

DARM

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent
 - spin-dependent *Phys.Dark Univ. 9-10, 51 (2015)* \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E) JCAP 1611, 017 (2016)
- supernova neutrinos PRD 89, 013011 (2014), PRD 94, 103009 (2016)

Electronic Recoil Interactions

Non-WIMP dark matter and neutrino physics

- axions, ALPs JCAP 1611, 017 (2016)
- sterile neutrinos
- JCAP 01, 044 (2014) – pp, ⁷Be: precision flux measurements
- CNO neutrinos with ¹³⁶Xe-depleted Xe PRD 99, 043006 (2019)

Neutrino Energy [keV] 30t target mass, 2-30 keV window

 10^{3}

⁷Be pep

pp

DARWIN

 2×10^{2}

0.8

0.7

0.6

0.5

0.4

0.3

0.2

പ്

- \rightarrow 2850 neutrinos per year (89% pp)
- \rightarrow real-time solar neutrino experiment

 2×10^{3}

 \rightarrow 1% statistical precision on pp-flux ($\rightarrow P_{ee}$) with 100 t×y

 10^{4}

⁸B

DARWIN: Science Channels

Nuclear Recoil Interactions

WIMP dark matter JCAP 10, 016 (2015)

- spin-independent (S1-S2, charge-only)
- spin-dependent
 - \rightarrow complementary with LHC, indirect det.
- various inelastic models, most EFT couplings

Coherent neutrino-nucleon scattering (CNNS)

- ⁸B neutrinos (low E), atmospheric (high E) JCAP 1611, 017 (2016)
- supernova neutrinos PRD 89, 013011 (2014), PRD 94, 103009 (2016)

Electronic Recoil Interactions

Non-WIMP dark matter and neutrino physics

- axions, ALPs JCAP 1611, 017 (2016)
- sterile neutrinos
- JCAP 01. 044 (2014) – pp, ⁷Be: precision flux measurements
- CNO neutrinos with ¹³⁶Xe-depleted Xe PRD 99, 043006 (

Rare nuclear events

- **0νββ (¹³⁶Xe)**, 0νEC (¹³⁴Xe), ...

JCAP 01, 044 (2014)

Sensitivity: T_{1/2} ≿ 2×10²⁷ y @ 90% CL

Neutron Background Studies

- define material and design requirements

		Activity						
Material	Unit	²³⁸ U	226Ra	²³⁵ U	²³² Th	228 <mark>Th</mark>	Ref.	1
Titanium	mBq/kg	< 1.6	< 0.09	< 0.02	0.28	0.23	LZ	Start
PTFE	mBq/kg	< 5e-3	< 5e-3	< 2e-4	<1.4e-3	<1.4e-3	EXO	realiz
Copper	mBq/kg	< 1	< 0.035	< 0.18	< 0.033	< 0.026	XENON	value
PMT	mBq/unit	8	0.6	0.37	0.7	0.6	XENON	
PMT bases	mBq/unit	0.82	0.32	0.071	0.20	0.15	XENON]

vith b ctivity

→ investigate Gd-based water Cherenkov neutron veto as well

DARWIN: 40t LXe TPC JCAP 11, 017 (2016)

darwin-observatory.org

Challenges

- Size
 - → electron drift (HV)
 - → diameter (TPC electrodes)
 - → mass (LXe purification)
 - → dimensions (radioactivity)
 - → detector response (calibration, corrections)
 - → Xe gas procurement

Backgrounds

- \rightarrow ²²²Rn
- \rightarrow (α ,n) neutrons
- → shielding (n-tagging)
- → ER rejection

Photosensors

- → high light yield (QE)
- \rightarrow low radioactivity
- → long-term stability

etc etc

R&D needed

DARWIN: R&D Examples

DARWIN

DARWIN: Exciting Opportunities

darwin-observatory.org

DARWIN: much more than

The ultimate Dark Matter Detector

→ The low-background, low-threshold Astroparticle Physics Observatory

DARWIN: Exciting Opportunities

darwin-observatory.org

DARWIN: much more than

The ultimate Dark Matter Detector

→ The low-background, low-threshold Astroparticle Physics Observatory

- DARWIN can be done at LNGS
 → need ≥12m water shield
- Timeline: R&D and construction parallel to XENONnT data taking

Backup

M. Schumann (Freiburg) – DARWIN

Dependence of Sensitivity

Reference WIMP mass = 40 GeV/c^2

1.40200 t × y, X-20.5 keVnr, CES 8PE, Rej=99.98%, Acc=30% 5.0-20.5 keVnr, CES 8PE, Rej=99.98%, Acc=30% 1.35 E 1.30Threshold Exposure Relative Cross Section 1.25 .20 1.15 1.101.05 all backgrounds 1.00CNNS only 0.95 0.90^t 800 1200 1000 5 8 9 6 Lower Threshold [keVnr] 1.40 200 t × y, 5.0-20.5 keVnr, Rej=99.98%, Acc=30%

JCAP 10, 016 (2015)

DARW

M. Schumann (Freiburg) - DARWIN

1.4

1.3Ē

1.2Ē

1.1E

1.00.9

0.8

0.7

0.6

0.5

0.4[±]

200

400

600

Relative Cross Section