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The Proton Radius Puzzle Appears
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Delayed / prompt events (104)
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« Atomic energy levels depend on the
proton structure - pup 2003 times more
sensitive than ep.

- Stop a muon beam to generate muonic
hydrogen, excite levels with laser, detect
through de-excitation X-ray, deduce

proton size from laser frequency
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Proton Radius as of 2013

Many analyses like below — differences between ep and pp
systems ranged from ~ 5.50 - 80 depending on data selection
and treatment.
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PRP Solutions

Two classes of explanations:

* Interesting new physics
* New physics: forces / particles beyond the standard model

* New aspects of conventional physics theory: proton
structure, radiative corrections, ...

- “Bad” experiment



The missing data

Two classes of explanations: How to resolve the puzzle?

* Interesting new physics Test explanations with a new
- “Bad” experiment series of measurements...




The missing data

Two classes of explanations: How to resolve the puzzle?
* Interesting new physics Test explanations with a new
- “Bad” experiment series of measurements...

-.E. Berliner Ph.D. thesis, unpublished.
Nevis Laboratories, Columbia
NEVIS-234 (1980)
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New experiments

Recent results in atomic physics and scattering suggest the
puzzle arose from poor experiments / radius extractions
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But ...

But the overlap of data in the scattering experiments and the
ISSues In previous spectroscopy experiments are not as clear as

one would like.

1.01 | ' ' ' ' ' ' ™ +—— PRad data
e PRad fit
I I I —— Mainz data
1 -{ 1 L | === Mainz fit
- 1 I mmmm  Mainz fit uncertainty
Bkl o emt———_ | T | ====- Mainz fit, forced r, = 0.841 fm
. 0.99 - ) e ———— % ewsssensss  Arrington 07
2 TR ; ) 'II: —-—-- Alarcon 19, r, = 0.841 fm
= i 3
<$0.98 | T
1 1 1 1 1 1 l 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Q* [(GeV/e)?]
Issue with experiment?
Plot from Jan Bernauer - Lo -
With radiative corrections?



MUSE at the Paul Scherrer Institute
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We use the M1
channel of the
HIPA facility of PSI




MUSE at the Paul Scherrer Institute
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MUSE is here

We use the M1
channel of the
HIPA facility.
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Mixed beam, cm sized, up
to £1.5% momentum bite
115 - 210 MeV/c

3.5 MHz flux
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2 mA, 590 MeV protons — et

T, U, € produced here
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MUSE idea

*MUon (proton) Scattering Experiment - MUSE”

A low-luminosity, large-acceptance, non-magnetic-spectrometer
scattering experiment

Broader than a proton radius with muons:

- Muon and electron scattering from protons for do/dQ, Ge and
r, at the same time

- Direct data-to-data comparisons remove fitting issues,
provides lepton universality / radiative correction test

- Both beam polarities — measurement of two-photon
exchange and radiative corrections

- The same U and e measurements on carbon

- Pion scattering, at the same time, a necessary “evil”, but also
a QCD effective field theory test

- Inverse pion electro-production? ...
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~$3.5M from NSF (2016-2020)
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M U S - Geant
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SiPM Scintillators

2-mm thick BC404 scintillator 1400

Hamamatsu SiPM readout
(S13360-3075PE)

CFDs 1000
Order of magnitude better
time resolution than usual.

O Data
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Performs well, but issues remain 400
at the 10s of ps level.
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SiPM Scintillators

Published: T. Rostomyan et al., https://doi.org/10.1016/j.nima.2020.164801

- — — —

Nuclear Instruments and Methods in Physics .
~ Research Section A: Accelerators, Spectrometers, =

ET SEVIER Detectors and Associated Equipment
Volume 986, 11 January 2021, 164801
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Timing detectors with SiPM read-out for the
MUSE experiment at PSI

T. Rostomyan # b = E.Cline® ¢ I. Lavrukhin 9 € H. Atac f, A. Atencio f,J.C. Bernauer © & W.J. Briscoe d D. Cohen
h E.0. Cohen C. Collicott 9, K. Deiters ?, S. Dogra ?, E. Downie d \W. Ernil, I.P. Fernando K A. Flannery ", T. Gautam
k D.GhosalJ ... N. Wuerfel €

Show more

https://doi.org/10.1016/j.nima.2020.164801 Get rights and content

Under a Creative Commons license open access
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https://doi.org/10.1016/j.nima.2020.164801

GEMs

From OLYMPUS, with readout and analysis upgrades
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VETO Scintillator

Immediately after GEMs (prior to installation)

fall 2018
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LH> Target

Operational since late 2018.
Published: P. Roy et al., https://doi.org/10.1016/;.nima.2019.162874
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Straw tube tracker, following
PANDA straw design

1 atm over-pressured Ar-COz
10 x, 10 y planes on each side
Readout with PASTTREC cards
and TRB3 TDCs

Connectors and gas system
being redone during 2020, as
well as one of the 8 chambers,
to enhance reliability.
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Jan 2020



Conventional scintillators

Conventional thick scintillators, Hamamatsu PMTs, 45-60 ps resolution

1 e =

- 1 /.
20 summer 2019, STT not yet installed



Conventional thick scintillators, Hamamatsu PMTs, 45-60 ps resolution

Conventional scintillators
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In scattering data
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Time of hits in BH compared
to reference (trigger) time.

The 19.75 ns beam RF
period can be seen.

There is not a sharp trigger
peak, as the logic signals are
aligned to FPGA clocks,
rather than being aligned to
the detector signals.

Good RF spectra are seen
for both the in- and out-of-
time signals.

Trigger
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Primary proton beam
generates e’s, \’s, and 1Ts
every “20” ns.

About 3.5 MHz of them travel
~ 23 m (80 - 100 ns) to reach
our detectors.

We need to identify the e’s
and mu’s, since pi’s scatter
more frequently.

The FPGA trigger does this,
within ~ 80 ns, for every
beam particle, for triggering.

Plots show e + | trigger
implemented, without 1t
Implemented as a veto.
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Radiative Corrections

RC are small for u’s are ~ 1.2% + 0.2%, over a wide range of angles and
minimum detected muon momentum. Calculations from A Afanasev (GWU).
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Radiative Corrections

RC are significant for e’s. Slide from S Strauch and L Li (USC).
Greatest sensitivity is to pre-radiation. Uses ESEPP.

ep — e’py Cross section in MUSE kinematics
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If the incident lepton loses energy due to emission of a hard photon then
the probability for this lepton to be scattered by the proton increases.
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Calorimeter

Assembled a forward-angle calorimeter from borrowed Mainz lead
glass, to remove events with high-energy photons in beam direction.
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Cut on Ey flattens the radiative
correction curve, reducing sensitivity
to cut on p’.
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Calorimeter

Tested calorimeter with e’s (and W’s, and 1Ts).

210 MeV/c
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rms / E ~12%, 13%, 16% at 210, 160, 115 MeV/c.
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Radiative Corrections

L LI, S Strauch (USC): MUSE Geant4 with ESEPP generator (Gramolin et al.)

Systematic uncertainties about as expected for e’s, very small for py’s.

Preliminary results Preliminary results

115 MeV 210 MeV
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0.57% | 0.65% | 0.81% | 037% | 0.48% | 0.74% 0.06% | 0.02% | 0.04% | 0.04% | 0.03% | 0.04%

~0.4-0.8% ~ 0.02 - 0.06%
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Pion scattering data

|. Lavrukhin Ph.D. thesis. 2019 data. Taken from his 2020 DNP talk.
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169.32 MeV/
. data

— PWA

BLab, degree

Good agreement with PWA calculations
bellow and above S11 resonance energy

(Tr= 79.50 MeV)

PWA doesn’t describe data well abound
predicted S11 resonance energy.

PWA calculations are provided by Prof.
Strakovsky (igor@gwu.edu).




MUSE Anticipated e, 1 data

Anticipated MUSE uncertainties vs PRAD, Mainz
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Current world’s bet data for TPE exchange:

Two-Photon Exchange

OLYMPUS, Henderson et al., PRL 118, 092501 (2017)

I I I I I

1.05 = Main spectrometer Fe— —
12° telescopes =

1.04 y Correlated uncertainty -
NG Blunden N only - --

1.03 S~ Blunden N + A —— -
S~ Bernauer ——

1.02 “~._  Tomalak -

101 | ) s -

]. I I e = = =

0.99 - |

0.98 —

0.97 —

I | | I I I
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.0 15 10 05 0.0
Q* [(GeV/c)']

31

Blunden: theory
Tomalak, Bernauer: fits

MUSE: 2 x as many data points,
~ 2 X better uncertainties for e’s.
Similar uncertainties J’s.

Slightly wider € range, but all
small Q2.



Status Summary

Full system assembled in 2019, but some detailed adjustments /
upgrades / studies in progress.

Planned to complete these and take meaningful scattering data this
year.

COVID happened.

Most of the upgrades completed, but will only be able to do tests of
these, over the next few weeks.

Expect to reassemble full system in spring 2021, test, and move to
production data taking.

Plan for 12 months of production running. 2021 - 2022 - 20237

Radius will take all data, but other results might come out sooner. Need
to maintain blinded analysis for radius.

Thank you
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Two Photon Exchange Corrections
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