Nucleon and nuclear structure from muonic and normal atoms

Randolf Pohl

Johannes Gutenberg Universität Mainz

WHSS 2020, Trieste 18. Nov. 2020

111 18178:0

DFG

Nuclear radii

the Standard Model

* Fundamental constants (CODATA)

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

The "Proton Radius Puzzle"

Measuring R_p using electrons: 0.88 fm (+- 0.7%) using muons: 0.84 fm (+- 0.05%)

μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013)

A "Proton Radius **Puzzle**" ??

Hydrogen

$$E_n \approx -\frac{R_\infty}{n^2}$$

1

Bohr formula

1

Rydberg constant

$$E_n \approx \frac{R_\infty}{n^2}$$

Bohr formula

3S ----- 3D

2S — 2P

Rydberg constant

$$E_n = \frac{R_{\infty}}{n^2} + \frac{1.2 MHz}{n^3} \langle r^2 \rangle \delta_{l0} + \Delta(n,l,j)$$

RP et al., Metrologia 54, L1 (2017)

RP et al., Metrologia 54, L1 (2017)

A proton, orbited by a **negative muon**.

Electronic and muonic atoms

Regular hydrogen:

Proton + Electron

Muonic hydrogen:

Proton + Muon

Muon **mass** = **200** * electron mass

Bohr radius = 1/200 of H

200³ = a **few million times** more sensitive to proton size

muon

Vastly not to scale!!

1S -

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

1S

2S state: μ spends some time **inside** the proton! State is sensitive to the proton size.

inelastic two-photon exchange (polarizability)

Muonic Deuterium

Muonic Deuterium

muonic

electronic

vs. +- 0.0034 meV experimental uncertainty

(1) charge radius, using calculated TPE

- r_{d} (µD) = 2.12717 (13) $_{exp}$ (82) $_{theo}$ fm vs.
- r_{d} (CODATA-14) = 2.1**4**130 (250) fm

(2) polarizability, using charge radius from isotope shift

 ΔE_{TPE} (theo) = 1.7500 (210) meV vs.

 ΔE_{TPE} (exp) = 1.7591 (59) meV 3.5x more accurate

Krauth et al. (2016) + Pachucki et al. (2018) + Hernandez et al. (2018) + Kalinowski (2018)

Hydrogen

Rp from H spectroscopy

Garching H(2S-4P)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

Garching H(2S-4P)

Beyer, Maisenbacher, RP et al, Science 358, 79 (2017)

The "Proton Radius Puzzle"MuonsElectrons

New Measurements: Garching 2S-4PMuonsElectrons

New Measurements: Paris 1S-3S Muons Electrons

New Measurements: Toronto 2S-2PMuonsElectrons

New Measurements: PRad Old value Muons PRad e-p 2019 hydrogen (2S-2P) Toronto 2019 hydrogen (1S-3S) hydrogen (2S-4P) Paris 2018 Garching 2017 CODA**T**A-2018 CODATA-2014 5.6 σ µD 2016 hydrogen µH 2013 (pre-2016) electron scattering µH 2010 (pre-2014) 0.86 0.83 0.840.85 0.87 0.89 0.88 proton charge radius R [fm] Xiong et al. (PRad), Nature 575, 147 (2019)

Garching H(1S-3S)

• cryogenic H beam (6 K)

Grinin, Matveev,.. RP et al, Science, next week

H(1S-3S) Garching 2020 Muons Old value

New Mainz electron accelerator MESA

Kurt Aulenbacher

MESA — "Mainz Energy-Recovering Superconducting Accelerator

Being built on Campus of JGU Mainz

MAGIX: windowless (gas-jet) target, lowest Q²

Muonic Helium

Accepted (Nature 2020)

Measured

Muonic Helium-3

 $^{3}\text{He}^{++}$

Theory: see Franke et al. EPJ D 71, 341 (2017) [1705.00352]

Theory: Diepold et al., Ann. Phys. (2018) incl. 3-photon nuclear polarizability (Pachucki, 2018)

Impact of μ^4He^+ measurements

Few-nucleon theories

- r_{α} represents a benchmark for fewnucleon theories.
- r_α can be used also to fix a low-energy constant of nuclear potential.
- r_α improves ⁶He and ⁸He radii

Müller, Lu

BSM physics

 Agreement constrains BSM models suggested to explain the R_p puzzle

Udem, MPQ Eikema, LaserLab

Combined with upcoming He⁺ (He) exp.

- bound-state QED test He⁺(1S-2S):
 60 kHz, u_r = 6x10⁻¹²
- Rydberg constant: 24 kHz
- 2PE+3PE in µHe with 0.1 meV uncertainty

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

Conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

The New Hork Times

Intermediate conclusions

Muonic atoms / ions provide:

• ~10x more accurate charge radii, when combined with

calculated polarizability

• few times more accurate **nuclear polarizability**,

when combined with charge radius from regular atoms

Muonic atoms are a novel tool for proton and new-nucleon properties!

The Present

Hyperfine structure in muonic H

CREMA-3 / HyperMu at PSI (R16.02)

The sky in hydrogen

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

v_{exp} = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

Hyperfine structure in H / μp

The 21 cm line in hydrogen (1S hyperfine splitting) has been **measured** to 12 digits (0.001 Hz) in 1971:

v_{exp} = 1 420 405. 751 766 7 ± 0.000 001 kHz

Essen et al., Nature 229, 110 (1971)

QED test is limited to 6 digits (800 Hz) because of proton structure effects:

$$v_{\text{theo}} = 1\ 420\ 403.\ 1\ \pm 0.6_{\text{proton size}}\ \pm 0.4_{\text{polarizability}}\ \text{kHz}$$

Eides et al., Springer Tracts 222, 217 (2007)

Proton Zemach radius

HFS depends on "Zemach" radius:

 $\Delta E = -2(Z\alpha)m\langle r \rangle_{(2)}E_F$

$$\langle r \rangle_{(2)} = \int d^3r d^3r' \rho_E(r) \rho_M(r') |r-r'|$$

Zemach, Phys. Rev. 104, 1771 (1956)

Form factors and momentum space

$$\Delta E = \frac{8(Z\alpha)m}{\pi n^3} E_F \int_0^\infty \frac{dk}{k^2} \left[\frac{G_E(-k^2)G_M(-k^2)}{1+\kappa} \right]$$

From charge to magnetic properties

2S-2P = Lamb shift

is sensitive to CHARGE radius

1S-HFS = Hyperfine splitting

is sensitive to **ZEMACH** radius

Proton Zemach radius from µp

µp 2013: Antognini et al. (CREMA Coll.), Science 339, 417 (2013)

Proton Zemach radius from µp

PSI Exp. R-16-02: Antognini, RP et al. (CREMA-3 / HyperMu)

see e.g. Schmidt, RP et al., J. Phys. Conf. Ser 1138, 012010 (2018); arXiv 1808.07240

related propsals: FAMU at RIKEN/RAL, muonic H at J-PARC

Predicting the resonance position

The resonance position

The Future

Charge radii: The future

Neutron number N

Charge radii: The future

Neutron number N

Tritium 1S-2S in a trap

Thanks a lot for your attention

My new Mainz group:

Konrad Franz, Lukas Görner, Jan Haack, Merten Heppener, Rishi Horn, Jonas Klingelhöfer, Ahmed Ouf, Gregor Schwendler, Lukas Schumacher, Hendrik Schürg, Benedikt Tscharn, Marcel Willig

The Garching Hydrogen Team:

Axel Beyer, Lothar Maisenbacher, Arthur Matveev, RP, Ksenia Khabarova, Alexey Grinin, Tobias Lamour, Dylan C. Yost, Theodor W. Hänsch, Nikolai Kolachevsky, Thomas Udem

The CREMA Collaboration:

Aldo Antognini, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W.
Hänsch, Paul Indelicato, Lucile Julien, Paul Knowles, Franz Kottmann, Juilian J. Krauth, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, François Nez, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Karsten Schuhmann, Catherine Schwob, David Taqqu, João F. C. A. Veloso, RP

Group at JGU Mainz

Group at JGU Mainz

Open Positions!

pohl @ uni-mainz.de

Fall 2019

Charge radii: The future

Neutron number N

muonic Li with heat pipe target

existing beam line: 1000/s at ~1 keV

to be built:

drift tube to 100 .. 10 eV lasers detectors (easy)

µ ⁶Li ²⁺

muonic Li: theory and accuracy

Item	$(\mu {}^{6}\mathrm{Li})^{2+}$	$(\mu {}^7{\rm Li})^{2+}$	
QED Lamb shift [meV]	4654.4(0.1)	4671.4(0.1)	
finite size [meV]	-3712(112)	-3335(117)	
nucl. shape (Friar moment) [meV]	223(-9)	191(9)	
nucl. polarizability [meV]	15(4)	21(4)	
total Lamb shift [meV]	1162(112)(10)	1532(117)(10)	
experimental accuracy goal ($\Gamma/10$) [meV]	0.7	0.7	
wavelengths ($\pm 3\sigma$ in charge radius)	575-800 $\rm nm$	$520\text{-}710~\mathrm{nm}$	
line width $\Gamma (nm/meV)$	$2.3 \text{ nm} \equiv$	$6.8\mathrm{meV}$	
K_{α} energy	18.7	keV	
2S lifetime $\tau(2S)$	830	ns	
$r(^{6}\text{Li}) = 2.58900(3900) \text{ fm } [31] \rightarrow$	$2.58xxx(40)^{exp}$	(400) th fm	$(\mu {}^{6}\mathrm{Li})^{2+}$
$r(^{7}\text{Li}) = 2.44400(4200) \text{ fm } [31] \rightarrow$	$2.44xxx(40)^{exp}$	(400) th fm	$(\mu {}^{7}{\rm Li})^{2+}$

exp: 100x better radius, but polarizability -> "only" 10x better

muonic Li and Li+

Item	$(\mu {}^{6}\mathrm{Li})^{2+}$	$(\mu {}^7{\rm Li})^{2+}$
QED Lamb shift [meV]	4654.4(0.1)	4671.4(0.1)
finite size [meV]	-3712(112)	-3335(117)
nucl. shape (Friar moment) [meV]	223(-9)	191(-9)
nucl. polarizability [meV]	15(4)	21(4)
total Lamb shift [meV]	1162(112)(10)	1532(117)(10)
experimental accuracy goal $(\Gamma/10)$ [meV]	0.7	0.7

 $r(^{6}\text{Li}) = 2.58900(3900) \text{ fm } [31] \rightarrow 2.58xxx(40)^{\exp}(400)^{\text{th}} \text{ fm}$ $r(^{7}\text{Li}) = 2.44400(4200) \text{ fm } [31] \rightarrow 2.44xxx(40)^{\exp}(400)^{\text{th}} \text{ fm}$ $(\mu {}^{6}\text{Li})^{2+}$ $(\mu {}^{7}\text{Li})^{2+}$

when combined with normal Li⁺ (Th. Udem)

 -> QED test: He/µHe vs. Li⁺/µLi and H/µH vs. He⁺/µHe
Rydberg constant H, He, Li, ...
100x better radius AND 10x better polariability,

Charge radii: The future

Neutron number N

simulations: µBe in Penning trap could maybe work, if muon energy <1eV

$r(^{6}\text{Li}) = 2.58900(3900) \text{ fm } [31]$	\rightarrow	$2.58xxx(40)^{\exp}(400)^{\text{th}}$ fm	$(\mu {}^{6}\text{Li})^{2+}$
$r(^{7}\text{Li}) = 2.44400(4200) \text{ fm } [31]$	\rightarrow	$2.44xxx(40)^{\exp}(400)^{\text{th}}$ fm	$(\mu^{7} {\rm Li})^{2+}$
$r(^{9}Be) = 2.51900(1200) \text{ fm } [31]$	\rightarrow	$2.51xxx(25)^{exp}(230)^{th}$ fm	$(\mu {}^{9}\text{Be})^{3+}$
r(p) = 0.87510(610) fm [65]	\rightarrow	$0.84087(26)^{\exp}(29)^{\text{th}} \text{ fm}$	μp [3]
r(d) = 2.14130(250) fm [65]	\rightarrow	$2.12562(13)^{\exp}(77)^{\text{th}} \text{fm}$	μd [4]
	\rightarrow	2.12771(22) fm	μp + H/D iso [3,
$r(^{3}\text{He}) = 1.97300(1400) \text{ fm } [68]$	\rightarrow	$1.96866(12)^{\exp}(128)^{\text{th}} \text{ fm}$	$(\mu{}^{3}\mathrm{He})^{+}$ prel. [66,
$r(^{4}\text{He}) = 1.68100(400) \text{ fm } [69]$	\rightarrow	$1.67779(13)^{\exp}(71)^{\text{th}} \text{ fm}$	$(\mu{}^{4}\mathrm{He})^{+}$ prel. [67,

Charge radii: The future

Neutron number N

Tritium 1S-2S in a trap

Tritium 1S-2S in a trap

- cryogenic H nozzle (4.2K)
- magnetic quadrupole guide
- Li MOT -> cold buffer gas
- magnetic trapping of H/D/T

Atomic H source

H beam profile

Magnetic quadrupole guide

Towards progress in guiding

Rb source,

no guiding yet.

Li MOT apparatus

Simulated trapping efficiency

Charge radii: The future

Neutron number N

Xiong et al., Nature 575, 147 (2019)

Xiong et al., Nature 575, 147 (2019)

Cross sections and fits

Xiong et al., Nature 575, 147 (2019)

Cross sections and fits

Xiong et al., Nature 575, 147 (2019)

Low Q² comparison

Correlation between $R_{_{D}}$ and $R_{_{D}}$ / $R_{_{d}}$

1S-2S: Parthey, RP et al., PRL 107, 203001 (2011)

Theory in muonic H

 $\Delta E_{\text{Lamb}} = 206.0336 (15) \text{ meV}_{\text{OED}} + 0.0332 (20) \text{ meV}_{\text{TPE}} - 5.2275 (10) \text{ meV/fm}^2 * R_n^2$

2P fine structure Simple-looking formula $2P_{3/2}$ based on decades of work by E. Borie, M.C. Birse, P. Blunden, C.E. Carlson, $2P_{1/2}$ M.I. Eides, R. Faustov, J.L. Friar, G. Paz, A. Pineda, J. McGovern, K. Griffioen, H. Grotch, 206 meV F. Hagelstein, H.-W. Hammer, R.J Hill, P.Indelicato, 50 THz U.D. Jentschura, S.G. Karshenboim, E.Y. Korzinin, 6 µm V.G. Ivanov, I.T. Lorenz, A.P. Martynenko, G.A. Miller, U.-G. Meissner, P.J. Mohr, Lamb K. Pachucki, V. Pascalutsa, J. Rafelski, shift V.A. Shelyuto, I. Sick, A.W. Thomas, 5.5 µm M. Vanderhaeghen, V. Yerokhin,

(shout if I missed your name!)

Antognini, RP at al., Ann. Phys. (N.Y.) 331, 127 (2013)

Theory in muonic H

Theory of the 2S–2P Lamb shift and 2S hyperfine (

Aldo Antognini^{a,*}, Franz Kottmann^a, François Biraben^b, Paul Indelicato^b, François Nez^b, Randolf Pohl^c

^a Institute for Particle Physics, ETH Zurich, 8093 Zurich, Switzerland

^b Laboratoire Kastler Brossel, École Normale Supérieure, CNRS and Université P. et M. Curie, 75252 Paris, CEDEX 05, France

^c Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

Our attempt to summarize all the original work by many theorists....

Theory I: "pure" QED

Table 1

All known radius-*independent* contributions to the Lamb shift in μ p from different authors, and the one we selected. Values are in meV. The entry # in the first column refers to Table 1 in Ref. [13]. The "finite-size to relativistic recoil correction" (entry #18 in [13]), which depends on the proton structure, has been shifted to Table 2, together with the small terms #26 and #27, and the proton polarizability term #25. SE: self-energy, VP: vacuum polarization, LBL: light-by-light scattering, Rel: relativistic, NR: non-relativistic, RC: recoil correction.

#	Contribution	Pachucki [10,11]	Nature [13]	Borie-v6 [79]	Indelicato [80]	Our choice	Ref.
1 2 3 19	NR one-loop electron VP (eVP) Rel. corr. (Breit–Pauli) Rel. one-loop eVP Rel. RC to eVP, $\alpha (Z\alpha)^4$	205.0074 0.0169 ^a (incl. in #2) ^b	205.0282 —0.0041	205.0282 —0.0041	205.02821	205.02821 —0.00208 ^c	[80] Eq. (54) [77,78]
4	Two-loop eVP (Källén–Sabry)	1.5079	1.5081	1.5081	1.50810	1.50810	[80] Eq. (57)
5 7 6	One-loop eVP in 2-Coulomb lines $\alpha^2 (Z\alpha)^5$ eVP corr. to Källén–Sabry NR three-loop eVP	0.1509 0.0023 0.0053	0.1509 0.00223 0.00529	0.1507 0.00223 0.00529	0.15102 0.00215	0.15102 0.00215 0.00529	[80] Eq. (60) [80] Eq. (62), [87] [87,88]
9 10 New	Wichmann–Kroll, "1:3" LBL Virtual Delbrück, "2:2" LBL "3:1" LBL		-0.00103 0.00135	-0.00102 0.00115 -0.00102	-0.00102	-0.00102 0.00115 -0.00102	[80] Eq. (64), [89] [74,89] [89]
20	$\mu { t SE}$ and $\mu { t VP}$	-0.6677	-0.66770	-0.66788	-0.66761	-0.66761	[80] Eqs. (72) + (76)
11 12 21 13 New	Muon SE corr. to eVP $\alpha^2 (Z\alpha)^4$ eVP loop in self-energy $\alpha^2 (Z\alpha)^4$ Higher order corr. to μ SE and μ VP Mixed eVP + μ VP eVP and μ VP in two Coulomb lines	-0.005(1) -0.001	-0.00500 -0.00150 -0.00169 0.00007	-0.004924^{d} -0.00171^{g} 0.00007	0.00005	-0.00254 f -0.00171 0.00007 0.00005	[85] Eq. (29a) ^e [74,90–92] [86] Eq. (177) [74] [80] Eq. (78)
14 15 16	Hadronic VP $\alpha (Z\alpha)^4 m_r$ Hadronic VP $\alpha (Z\alpha)^5 m_r$ Rad corr. to hadronic VP	0.0113(3)	0.01077(38) 0.000047 -0.000015	0.011(1)		0.01121(44) 0.000047 0.000015	[93–95] [94,95] [94,95]
17 22 23 New	Recoil corr. Rel. RC $(Z\alpha)^5$ Rel. RC $(Z\alpha)^6$ Rad. (only eVP) RC $\alpha(Z\alpha)^5$	0.0575 0.045 0.0003	0.05750 	0.0575 —0.04497	0.05747 	0.05747 	[80] Eq. (88) [80] Eq. (88), [74] [80] Eq. (86)+Tab.II [85] Eq. (64a)
24	Rad. RC $\alpha(Z\alpha)^n$ (proton SE)	-0.0099	-0.00960	-0.0100		-0.01080(100)	[43] ^h [74]
	Sum	206.0312	206.02915	206.02862		206.03339(109)	

Theory in muonic H

Theory in muonic D

 $\Delta E_{\text{Lamb}}^{\mu D} = 228.7854 \text{ (13) } \text{meV}_{\text{QED}} + 1.7150 \text{ (230) } \text{meV}_{\text{TPE}} - 6.1103 \text{ (3) } \text{meV/fm}^2 * R_d^2$

Nuclear structure contributions to the Lamb shift in muonic deuterium.

Item	Contribution	Pachuck	i [55]		Friar [60]	Hern	andez $et a$	l. [58]	Pach.& Wi	enczek [65]	Carlson et al. [64]		Our choice	
		AV18		ZRA		AV18	$N^{3}LO^{\dagger}$		AV18		data		value	source
	Source	1		2		3	4		5		6			
p1	Dipole	1.910	$\delta_0 E$	1.925	Leading C1	1.907	1.926	$\delta_{D1}^{(0)}$	1.910	$\delta_0 E$		1.9165	$\pm \ 0.0095$	3-5
p2	Rel. corr. to p1, longitudinal part	-0.035	$\delta_R E$	-0.037	Subleading C1	-0.029	-0.030	$\delta_L^{(0)}$	-0.026	$\delta_R E$				
p3	Rel. corr. to p1, transverse part					0.012	0.013	$\delta_{T}^{(0)}$						
$\mathbf{p4}$	Rel. corr. to p1, higher-order								0.004	$\delta_{HO}E$				
sum	Total rel. corr., p $2+p3+p4$	-0.035		-0.037		-0.017	-0.017		-0.022			-0.0195	$\pm \ 0.0025$	3-5
$\mathbf{p}5$	Coulomb distortion, leading	-0.255	$\delta_{C1}E$						-0.255	$\delta_{C1}E$				
$\mathbf{p6}$	Coul. distortion, next order	-0.006	$\delta_{C2}E$						-0.006	$\delta_{C2}E$				
sum	Total Coulomb distortion, $\mathbf{p5+p6}$	-0.261				-0.262	-0.264	$\delta_{C}^{(0)}$	-0.261			-0.2625	$\pm \ 0.0015$	3-5
$\mathbf{p7}$	El. monopole excitation	-0.045	$\delta_{Q0}E$	-0.042	C0	-0.042	-0.041	$\delta_{R2}^{(2)}$	-0.042	$\delta_{Q0}E$				
$\mathbf{p8}$	El. dipole excitation	0.151	$\delta_{Q1}E$	0.137	Retarded C1	0.139	0.140	$\delta_{D1D3}^{(2)}$	0.139	$\delta_{Q1}E$				
p9	El. quadrupole excitation	-0.066	$\delta_{Q2}E$	-0.061	C2	-0.061	-0.061	$\delta_{Q}^{(2)}$	-0.061	$\delta_{Q2}E$				
sum	Tot. nuclear excitation, $\mathbf{p7}{+}\mathbf{p8}{+}\mathbf{p9}$	0.040		0.034	$\rm C0+ret\text{-}C1+C2$	0.036	0.038		0.036			0.0360	$\pm \ 0.0020$	2-5
p10	Magnetic	-0.008 $^{\diamond a}$	$\delta_M E$	-0.011	M1	-0.008	-0.007	$\delta_M^{(0)}$	-0.008	$\delta_M E$		-0.0090	\pm 0.0020	2-5
SUM_1	Total nuclear (corrected)	1.646		$1.648^{\ b}$		1.656	1.676		1.655			1.6615	\pm 0.0103	
p11	Finite nucleon size			0.021	Retarded C1 f.s.	0.020^{\diamond}	c 0.021 $^{\diamond}$	$^{c} \delta_{NS}^{(2)}$	0.020	$\delta_{FS}E$				
p12	n p charge correlation			-0.023	pn correl. f.s.	-0.017	-0.017	$\delta_{np}^{(1)}$	-0.018	$\delta_{FZ}E$				
sum	p11+p12			-0.002		0.003	0.004	-	0.002			0.0010	\pm 0.0030	2-5
p13	Proton elastic 3rd Zemach moment	$\left\{ \right\}_{0.043(3)}$	$\delta P E$	0.030	$\langle r^3 \rangle_{(2)}^{pp}$				$\left\{ \right\}_{0.043(3)}$	$\delta_P E$		0.0289	\pm 0.0015	$\operatorname{Eq.}(13)^d$
p14	Proton inelastic polarizab.]] 0.010(0)	0712				27(2)	§N [64]]] 0.010(0)	•F 2	LO 028(2) A Ehadr	1 20 0280	± 0.0020	6
p15	Neutron inelastic polarizab.						27(2)	opol [04]	0.016(8)	$\delta_N E$	$\int 0.028(2) \Delta E$	∫ ^{0.0280}	± 0.0020	0
p16	Proton & neutron subtraction term											-0.0098	$\pm \ 0.0098$	$\operatorname{Eq.}(15)^e$
sum	Nucleon TPE, $p13+p14+p15+p16$	0.043(3)		0.030		0.03	27(2)		0.059(9)			0.0471	\pm 0.0101	f
SUM_2	Total nucleon contrib.	0.043(3)		0.028		0.03	30(2)		0.061(9)			0.0476	\pm 0.0105	
	Sum, published	1.680(16)	1.941(1	19)	1.69	0(20)		1.717(20)		2.011(740)			
	$\mathbf{Sum}, \mathrm{corrected}$			1.697(1	19) ^g	1.714	$(20)^{h}$		1.707(20)	i	$1.748(740)^{j}$	1.7096	±0.0147	

Krauth, RP at al., Ann. Phys. (N.Y.) 366, 168 (2016)

+ Pachucki et al., PRA 97, 062511 (2018)

+ Hernandez et al., PLB 778, 377 (2018)

Deuteron radius

Hernandez et al, Phys. Lett. B 778, 377 (2018) Pachucki et al., PRA 97, 062511 (2018)

Garching H(1S-3S)

- Direct Frequency Comb Spectroscopy
- cryogenic H beam (6 K)
- 740 Hz (total), 110 Hz (stat.)

Grinin, Matveev,.. RP et al, submitted (2020)

Grinin, Matveev,.. RP et al, submitted (2020)

Garching H(1S-3S)

contribution	average effect	correction	uncertainty
statistics			0.11
CIFODS	+0.79		0.08
SOD	-3.19		0.26
AC–Stark	+4.59		0.30
pressure shift	+0.87		0.35
residual Doppler			0.48
DC–Stark	+0.031	-0.031	0.015
Zeeman shift	-0.002	+0.002	0.002
line pulling	-0.30	+0.30	0.050
MP CIFODS			0.10
maser	-0.30	+0.30	0.030
total		+0.57	0.74

- Direct Frequency Comb Spectroscopy
- cryogenic H beam (6 K)
- 740 Hz (total), 110 Hz (stat.)

Grinin, Matveev,.. RP et al, submitted (2020)

- Direct Frequency Comb Spectroscopy
- cryogenic H beam (6 K)
- 740 Hz (total), 110 Hz (stat.)

Grinin, Matveev,.. RP et al, submitted (2020)