Precise determination of proton magnetic radius from electron scattering data

C. Weiss (JLab), IWHSS2020 Hadron Structure and Spectroscopy, Trieste, 16-18 Nov 2020 with J.M. Alarcón (U. de Alcalá), D.W. Higinbotham (JLab)

Radius extraction using theory-based method: Dispersively improved chiral EFT

Combines dispersion theory (analyticity, sum rules) and χ EFT (dynamics, controled accuracy) Correlates values of radii with FF behavior at finite $Q^2 \lesssim 1$ GeV²

Enables reliable determination of magnetic radius

Method: J. M. Alarcon, C. Weiss, PLB 784 (2018) 373; PRC **97**, 055203 (2018); J. M. Alarcon, A. N. Hiller Blin, M. Vicente Vacas, C. Weiss, NPA **964**, 18 (2017)

Radius extraction: J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) 035203 See also: J. M. Alarcon, D. Higinbotham, C. Weiss, Z. Ye, PRC 99 (2019) 044303

Motivation: Analyticity in radius extraction

Derivative at $Q^2 = 0$ from data at finite $Q^2 > 0$

Extrapolation $Q^2 \rightarrow 0$: Stability, functional bias? see e.g. Barcus, Higinbotham, McClellan 2020

Magnetic radius: Contribution of G^p_M to elastic ep cross section $\propto \tau/\epsilon$, vanishes for $Q^2 \to 0$

• Analyticity

FFs analytic functions of $t = -Q^2$

Singularities at t > 0: Hadronic exchanges

Correlates functional behavior of FF at $Q^2 > 0 \label{eq:eq:correlates}$ with derivative at $Q^2 = 0$

Predicts size of higher derivatives

Global properties: Sum rules

Use in radius extraction!

$\mathrm{DI}\chi\mathrm{EFT}$: Dispersively improved chiral EFT

• Dispersive representation

$$F_i(t) = \int_{t_{\text{thr}}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im } F_i(t')}{t' - t - i0}$$

Expresses analytic structure

Im F_i spectral function, constructed theoretically

$$\operatorname{Im} F_{i}(t) = \frac{k_{\rm cm}^{3}}{\sqrt{t}} \Gamma_{i}(t) \quad F_{\pi}^{*}(t)$$
$$= \frac{k_{\rm cm}^{3}}{\sqrt{t}} \underbrace{\frac{\Gamma_{i}(t)}{F_{\pi}(t)}}_{\chi \mathsf{EFT}} \underbrace{|F_{\pi}(t)|^{2}}_{\mathsf{Data}}$$

• Spectral function in $\pi\pi$ region

Elastic unitarity relation Frazer, Fulco 1960; Höhler et al 1975+

Factorize $\pi\pi$ rescattering using N/D method

 $\Gamma_i/F_{\pi}: \ \pi\pi - NN$ coupling, calculated in $\chi {\rm EFT}$ good convergence

 $|F_{\pi}|^2$: $\pi\pi$ rescattering, taken from e^+e^- data

Presently implemented LO + NLO + partial N2LO Alarcon, Weiss, PLB 784 (2018) 373; PRC 97 (2018) 055203

$\mathrm{DI}\chi\mathrm{EFT}$: Sum rules and parameters

$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im}F_1(t)}{t} = Q$$
$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im}F_1(t)}{t^2} = \frac{1}{6} \langle r^2 \rangle_1$$
$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im}F_2(t)}{t} = \kappa$$
$$\frac{1}{\pi} \int_{t_{\text{thr}}}^{\infty} dt \, \frac{\text{Im}F_2(t)}{t^2} = \frac{1}{6} \kappa \langle r^2 \rangle_2$$

• Spectral function in high-mass region

Parameterized by effective pole

Sufficient for low- Q^2 form factors, uncertainty quantified Alarcon, Weiss PLB 784 (2018) 373

• Sum rules and parameters

Sum rules for F(0), F'(0) = charges, radii

Express χ EFT LEC in terms of radii

Radii appear directly as parameters of spectral functions, control behavior

[Different from traditional dispersion analysis, where $\pi\pi$ spectral function taken as fixed input Höhler et al 1975; Belushkin, Hammer Meissner 2006; Lorenz, Hammer, Meissner 2012]

DI χ **EFT: Spectral functions**

• Spectral functions in $\pi\pi$ region

Band shows variation with radii (PDG range)

Good agreement with Roy-Steiner results Hoferichter et al 2017

Alarcon, Weiss, PLB 784 (2018) 373 Bands: Variation with nucleon radii (PDG range)

$\mathrm{DI}\chi\mathrm{EFT}$: Form factors

 G_M similar, dependence on r_M

Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303 Empirical FF: Global fit Ye et al 2017 Form factors from dispersion integral

$$G_{E,M}(t) = \int_{4M_{\pi}^2}^{\infty} \frac{dt'}{\pi} \frac{\text{Im} G_{E,M}(t')}{t' - t - i0}$$

- Family of FFs depending on radii
 Each member respects analyticity, sum rules
 Each has intrinsic theoretical uncertainty
- Radius correlated with finite- Q^2 behavior Provided by analyticity

Use for radius extraction!

Magnetic radius extraction: Procedure

- Use $\mathsf{DI}\chi\mathsf{EFT}\ G^p_{E,M}(Q^2)$ with params r^p_E, r^p_M
- Fit Mainz A1 cross section data

$$E=$$
 0.18–0.855 GeV, $Q^2=$ 0.003–1.0 GeV 2

Fit original cross secns with floating normalizations

Alt: Fit reanalyzed cross secns of Lee Arrington Hill 2015 with recalc uncertainties: Same radii, lower χ^2

• Impact on magnetic radius

Sensitivity of cross section to G_M^p

Dependence of $\mathsf{DI}\chi\mathsf{EFT}\ G^p_M$ on r^p_M

Theoretical uncertainty from high-mass pole

Use data up to Q^2pprox 0.5 GeV 2

Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203

Magnetic radius extraction: Results

• Extracted radii

 $r_E^p=$ 0.842 \pm 0.002 (fit 1σ) $^{+0.005}_{-0.002}$ (theory full-range) fm

 r_M^p = 0.850 ± 0.001 (fit $1\sigma)$ $^{+0.009}_{-0.004}$ (theory full-range) fm

Magnetic radius has smaller fit uncertainty, larger theory unc

Magnetic radius needs theory-based extraction method

Consistent with results of empirical dispersive fits Lorenz, Hammer, Meissner 2012

Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203

Summary

- DI χ EFT describes nucleon FFs combining dispersion theory and χ EFT Includes $\pi\pi$ rescattering and ρ resonance through unitarity Enables predictive calculations, controlled theoretical accuracy Excellent agreement with empirical FFs up to $Q^2 \sim 1 \text{ GeV}^2$ and beyond
- $DI\chi EFT$ enables theory-based radius extraction

Correlates $Q^2 = 0$ derivatives with finite- Q^2 behavior through analyticity + sum rules Employs radii directly as parameters \leftrightarrow LECs Enables reliable determination of magnetic radius from finite- Q^2 data

• Other $DI\chi EFT$ applications

Nucleon transverse charge/magnetization densities \leftrightarrow GPDs $_{Alarcon, Weiss, in progress}$

Nucleon scalar FF $\leftrightarrow \sigma$ term, nucleon mass decomposition $_{\rm Alarcon, \ Weiss, \ PRC \ 96, \ 055206 \ (2017)}$

Supplement: $DI\chi EFT$ form factors

• $DI\chi EFT$ form factors

Evaluated using dispersion integral with spectral functions

Band shows variation with radii (PDG range). Also quantified uncertainty from high-mass states

Excellent agreement with data. Not fit, but prediction based on dynamics