## Precise determination of proton magnetic radius from electron scattering data

C. Weiss (JLab), IWHSS2020 Hadron Structure and Spectroscopy, Trieste, 16-18 Nov 2020 with J.M. Alarcón (U. de Alcalá), D.W. Higinbotham (JLab)

Radius extraction using theory-based method: Dispersively improved chiral EFT
Combines dispersion theory (analyticity, sum rules) and $\chi$ EFT (dynamics, controled accuracy) Correlates values of radii with FF behavior at finite $Q^{2} \lesssim 1 \mathrm{GeV}^{2}$
Enables reliable determination of magnetic radius

Method: J. M. Alarcon, C. Weiss, PLB 784 (2018) 373; PRC 97, 055203 (2018);
J. M. Alarcon, A. N. Hiller Blin, M. Vicente Vacas, C. Weiss, NPA 964, 18 (2017)

Radius extraction: J. M. Alarcon, D. Higinbotham, C. Weiss, PRC 102 (2020) $035203 \leftarrow$
See also: J. M. Alarcon, D. Higinbotham, C. Weiss, Z. Ye, PRC 99 (2019) 044303

Universidad de Alcalá

## Motivation: Analyticity in radius extraction



- Challenges in proton radius extraction

Derivative at $Q^{2}=0$ from data at finite $Q^{2}>0$
Extrapolation $Q^{2} \rightarrow 0$ : Stability, functional bias? see e.g. Barcus, Higinbotham, McClellan 2020

Magnetic radius: Contribution of $G_{M}^{p}$ to elastic $e p$ cross section $\propto \tau / \epsilon$, vanishes for $Q^{2} \rightarrow 0$

- Analyticity

FFs analytic functions of $t=-Q^{2}$
Singularities at $t>0$ : Hadronic exchanges
Correlates functional behavior of FF at $Q^{2}>0$ with derivative at $Q^{2}=0$

Predicts size of higher derivatives
Global properties: Sum rules
Use in radius extraction!

## DI $\chi$ EFT: Dispersively improved chiral EFT

- Dispersive representation


$$
F_{i}(t)=\int_{t_{\mathrm{thr}}}^{\infty} \frac{d t^{\prime}}{\pi} \frac{\operatorname{Im} F_{i}\left(t^{\prime}\right)}{t^{\prime}-t-i 0}
$$

Expresses analytic structure
Im $F_{i}$ spectral function, constructed theoretically

- Spectral function in $\pi \pi$ region

Elastic unitarity relation
Frazer, Fulco 1960; Höhler et al 1975+
Factorize $\pi \pi$ rescattering using $N / D$ method
$\Gamma_{i} / F_{\pi}: \pi \pi-N N$ coupling, calculated in $\chi \mathrm{EFT}$ good convergence
$\left|F_{\pi}\right|^{2}: \pi \pi$ rescattering, taken from $e^{+} e^{-}$data
Presently implemented LO + NLO + partial N2LO Alarcon, Weiss, PLB 784 (2018) 373; PRC 97 (2018) 055203


$$
\begin{aligned}
\operatorname{Im} F_{i}(t) & =\frac{k_{\mathrm{cm}}^{3}}{\sqrt{t}} \Gamma_{i}(t) F_{\pi}^{*}(t) \\
& =\frac{k_{\mathrm{cm}}^{3}}{\sqrt{t}} \underbrace{\frac{\Gamma_{i}(t)}{F_{\pi}(t)}}_{\chi \mathrm{EFT}} \underbrace{\left|F_{\pi}(t)\right|^{2}}_{\text {Data }}
\end{aligned}
$$

## DI $\chi$ EFT: Sum rules and parameters



- Spectral function in high-mass region

Parameterized by effective pole
Sufficient for low- $Q^{2}$ form factors, uncertainty quantified
Alarcon, Weiss PLB 784 (2018) 373

- Sum rules and parameters

Sum rules for $F(0), F^{\prime}(0)=$ charges, radii
Express $\chi$ EFT LEC in terms of radii
Radii appear directly as parameters of spectral functions, control behavior
[Different from traditional dispersion analysis, where $\pi \pi$ spectral function taken as fixed input Höhler et al 1975; Belushkin, Hammer Meissner 2006; Lorenz, Hammer, Meissner 2012]

## DI $\chi$ EFT: Spectral functions



- Spectral functions in $\pi \pi$ region

Band shows variation with radii (PDG range)
Good agreement with Roy-Steiner results Hoferichter et al 2017

Bands: Variation with nucleon radii (PDG range)

## DI $\chi$ EFT: Form factors

$G_{M}$ similar, dependence on $r_{M}$

Alarcon, Higinbotham, Weiss, Ye PRC 99 (2019) 044303 Empirical FF: Global fit Ye et al 2017


- Form factors from dispersion integral

$$
G_{E, M}(t)=\int_{4 M_{\pi}^{2}}^{\infty} \frac{d t^{\prime}}{\pi} \frac{\operatorname{Im} G_{E, M}\left(t^{\prime}\right)}{t^{\prime}-t-i 0}
$$

- Family of FFs depending on radii

Each member respects analyticity, sum rules
Each has intrinsic theoretical uncertainty

- Radius correlated with finite- $Q^{2}$ behavior

Provided by analyticity
Use for radius extraction!

## Magnetic radius extraction: Procedure





$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Mott}} \frac{\epsilon\left[G_{E}^{p}\right]^{2}+\tau\left[G_{M}^{p}\right]^{2}}{\epsilon(1+\tau)}
$$

- Use DI $\chi$ EFT $G_{E, M}^{p}\left(Q^{2}\right)$ with params $r_{E}^{p}, r_{M}^{p}$
- Fit Mainz A1 cross section data

$$
E=0.18-0.855 \mathrm{GeV}, Q^{2}=0.003-1.0 \mathrm{GeV}^{2}
$$

Fit original cross secns with floating normalizations
Alt: Fit reanalyzed cross secns of Lee Arrington Hill 2015 with recalc uncertainties: Same radii, lower $\chi^{2}$

- Impact on magnetic radius

Sensitivity of cross section to $G_{M}^{p}$
Dependence of DI $\chi \mathrm{EFT} G_{M}^{p}$ on $r_{M}^{p}$
Theoretical uncertainty from high-mass pole
Use data up to $Q^{2} \approx 0.5 \mathrm{GeV}^{2}$

## Magnetic radius extraction: Results








- Extracted radii

$$
\begin{aligned}
& r_{E}^{p}=0.842 \pm 0.002(\text { fit } 1 \sigma){ }_{-0.002}^{+0.005} \text { (theory full-range) } \mathrm{fm} \\
& r_{M}^{p}=0.850 \pm 0.001(\text { fit } 1 \sigma)_{-0.004}^{+0.009} \text { (theory full-range) } \mathrm{fm}
\end{aligned}
$$

Magnetic radius has smaller fit uncertainty, larger theory unc
Magnetic radius needs theory-based extraction method
Consistent with results of empirical dispersive fits Lorenz, Hammer, Meissner 2012


Alarcon, Higinbotham, Weiss, PRC 102 (2020) 035203

## Summary

- DI $\chi$ EFT describes nucleon FFs combining dispersion theory and $\chi$ EFT

Includes $\pi \pi$ rescattering and $\rho$ resonance through unitarity
Enables predictive calculations, controlled theoretical accuracy
Excellent agreement with empirical FFs up to $Q^{2} \sim 1 \mathrm{GeV}^{2}$ and beyond

- DI $\chi$ EFT enables theory-based radius extraction

Correlates $Q^{2}=0$ derivatives with finite- $Q^{2}$ behavior through analyticity + sum rules
Employs radii directly as parameters $\leftrightarrow$ LECs
Enables reliable determination of magnetic radius from finite- $Q^{2}$ data

- Other DI $\chi$ EFT applications

Nucleon transverse charge/magnetization densities $\leftrightarrow$ GPDs
Alarcon, Weiss, in progress
Nucleon scalar FF $\leftrightarrow \sigma$ term, nucleon mass decomposition
Alarcon, Weiss, PRC 96, 055206 (2017)

## Supplement: DI $\chi$ EFT form factors




$$
G_{E, M}(t)=\int_{4 M_{\pi}^{2}}^{\infty} \frac{d t^{\prime}}{\pi} \frac{\operatorname{Im} G_{E, M}\left(t^{\prime}\right)}{t^{\prime}-t-i 0}
$$



Alarcon, Weiss, PLB 784 (2018) 373
Bands: Variation with nucleon radii (PDG range)

- DI $\chi$ EFT form factors

Evaluated using dispersion integral with spectral functions
Band shows variation with radii (PDG range).
Also quantified uncertainty from high-mass states
Excellent agreement with data. Not fit, but prediction based on dynamics

