

Overview of Proton Radius Measurements

Jan Friedrich

P. Mergell et al./Nuclear Physics A 596 (1996) 367-396

Fig. 1. Two-pion cut contribution to the isovector nucleon form factors.

18 November 2020 IWHSS2020 Trieste/zoom

Jan Friedrich

The quest for the extension of the proton – a look at the origins

PHYSICAL REVIEW

VOLUME 79, NUMBER 4

AUGUST 15, 1950

High Energy Elastic Scattering of Electrons on Protons

M. N. ROSENBLUTH Stanford University, Stanford, California (Received March 28, 1950)

The theory of the elastic scattering of electrons on protons at very high energies is discussed in detail. A formula is given for the cross section. This formula contains certain parameters which depend on the action of the virtual photon and meson fields. In particular, curves have been calculated on the assumption of scalar and pseudoscalar meson theory. While these perturbation theory calculations are not very trustworthy, and the results depend on the choice of coupling constants, it is felt that qualitative features can be checked with experiment. It is concluded that at low relativistic energies (E < 50 Mev) the experiment provides a valuable check on quantum electrodynamics. At higher energies it should yield data on the nature of the meson cloud of the proton.

Measurement of the Proton Radius in *ep*-Scattering

FIG. 15. The semicircular 190-Mev spectrometer, to the left, is shown on the gun mount. The upper platform carries the lead and paraffin shielding that encloses the Cerenkov counter. The brass scattring chamber is shown below with the thin window encircling it. Ion chamber monitors appear in the foreground.

REVIEWS OF MODERN PHYSICS

VOLUME 28. NUMBER 3

JULY, 1956

Electron Scattering and Nuclear Structure*

ROBERT HOFSTADTER

Department of Physics, Stanford University, Stanford, California

The low background has been achieved with the spectrometer, detector, and shield now to be described. A photograph of the apparatus is given in Fig. 15. It

the story goes on

1950	formalism for high-energy ep scattering (Rosenbluth)				
1956	first measurements: $r_p = 0.80$ fm (Hofstadter)				
1957-59	dispersion relations (DR) are introduced (Nambu, Goldberger et al.)				
1960	$J^P = 1^- \pi \pi$ resonance at $m \approx 630$ MeV (vector meson) is postulated to explain the proton radius (Frazer&Fulco, Bergia <i>et al.</i>)				
1961	the $ ho(770)$ is found (Erwin, Stonehill <i>et al.</i>)				
1966	Hofstadter high $-Q^2$ data: dipole form factor				
1975	Borkowski data fit: $r_p = 0.88 \text{ fm}$				
1976	Höhler DR fit: $r_p = 0.836 \text{ fm}$				
1980	Mainz low $-Q^2$ precision data (1): $r_p = 0.862$ fm (Simon <i>et al.</i>)				
1995	Mergell, Meißner, Drechsel DR fit: $r_p = 0.847$ fm				
2010	Mainz low $-Q^2$ precision data (2): $r_p = 0.879$ fm (Bernauer <i>et al.</i>) μ H line splitting: $r_p = 0.841$ fm (Pohl <i>et al.</i>)				
>2010	dozens of papers on fitting procedures, systematic effects etc.				

Measurements of the Proton Radius in 2010

Planned, ongoing, recent scattering experiments of the proton form factor

New data from lepton-proton scattering

Several proposed, preparing, ongoing experiments to solve the puzzle in the next years

- PRad: electron-proton with *E*_e = 1.1/2.2 GeV
 → Recent publication of results: smaller value
 → PRad2: detector upgrade planned *talk by Ashot Gasparian*
- **MAMI**: electron-proton with $E_e < 750$ MeV \rightarrow Two new experiments in preparation
- MAGIX-MESA: electron-proton with *E*_e < 150 MeV
 → Electric and magnetic form factor
 → New accelerator start in 2024
- MUSE: muon/electron-proton with E_{e,μ} < 140 MeV
 → Comparison of electron and muon scattering
 → Start of data taking in 2019 talk by Ronald Gilman
- **OLYMPUS**: electron/positron-proton with $E_e = 2-3$ GeV \rightarrow Ratio of e^+/e^- c.s. gives access to 2-photon exchange
- **COMPASS++/AMBER**: muon-proton, $E_{\mu} \sim 100 \text{ GeV}$ \rightarrow Data for high-energy elastic μ -proton scattering
 - ightarrow Different systematics compared to other

Proton Radius Experiment at Jefferson Lab

PRoton Radius

LMU

ТШ

Mainz Energy-recovering Superconducting Accelerator

Kinematic ranges

- Relative contribution c_E of the electric form factor G_E to c.s. is practically constant for lepton beam energies > 1GeV (Rosenbluth separation not possible)
- At small Q² the contribution of G_M is very small and its impact can be safely estimated (even with assuming large uncertainty on G_M)
- Differences due to lepton mass only at small beam energy / large scattering angles

Mainz vs. JLab data

uncertainties for the COMPASS++/AMBER proposal

- program for 200 days of beam
- precision on the proton radius < 0.01 fm

Q² coverage and precision for different lepton scattering experiments

courtesy: J. Bernauer, Proc's FCCP2019

Precision in the context of the puzzle

CERN-SPSC-2019-022; SPSC-P-360

Proposal for Measurements at the M2 beam line of the CERN SPS

– Phase-1 –

COMPASS++*/AMBER[†]

Physics program recommended by the CERN SPSC in Oct 2020

ORIGINS

- 100 GeV muons of the CERN M2 beamline
- Protons in an active-target high-pressure TPC
- Silicon detectors for precision tracking
- 500µm SciFi stations for trigger/timing of the scattered muons
- inner tracking and ECAL of the COMPASS spectrometer

- up to 20 bar pressure
- 600mm diameter of active volume
- reconstruction of recoil energy 0.5-20 MeV (10⁻³...4x10⁻² GeV²)

Measurement of elastic μ -p-scattering

Active-target pressurized hydrogen TPC combined with tracking and *COMPASS* spectrometer.

- Direct measurement of recoil-proton energy: $0.001 \le Q^2 / (\text{GeV}^2/c^2) \le 0.02$
- Conservative scenario: \rightarrow Low-Q²: 0.001 $\leq Q^2 / (\text{GeV}^2/c^2) \leq 0.0025$ \rightarrow High-Q²: 0.0025 $\leq Q^2 / (\text{GeV}^2/c^2) \leq 0.02$
- Data taking of 150 days Phase II:
 → 43 days low-Q² at 4 bar
 → 107 days high-Q² at 20 bar
- Data set with 33 · 10⁶ events:

 → stat. prec. on <r²>: 1.6 %
 → fixed <r⁶> term: 0.7 %
 (values from simulation)

Stat. Prec.	fixed $< r^6 >$	$Q^2~({ m GeV}^2/c^2)$	Statistics	Pressure	Comment
0.9~%	0.5~%	0.0010 - 0.04	70 mio.	20 bar	150 days
1.2~%	0.6~%	0.0025 - 0.04	37 mio.	20 bar	$150 \mathrm{~days}$
1.6~%	0.7~%	0.0010 - 0.04	6 + 27 mio.	4 + 20 bar	43 + 107 days
1.4~%	0.7~%	0.0010 - 0.04	12 + 27 mio.	4 + 20 bar	86 + 107 days

Fitting procedures and theory input: talk by Christian Weiss

New DAQ development

A concept applying continuous DAQ based on the following principals:

- Continuously delivering front-end electronics
- Front-end data can be forwarded to trigger processors
- Hardware event builder stores data until trigger decision
- Status and Plans:
 - \rightarrow Adaption of DAQ firmware and software (within 2020)
 - \rightarrow Increase of data rate capability (2/10 GB/s 2022/2023)
 - \rightarrow Development of digital trigger (iFTDC card since 2019)

Bremsstrahlung: real-photon emission along the muon-proton scattering

- Bremsstrahlung accompanies the elastic process
- for low-energy photons roughly 1/E_γ ('infrared divergence')
- angular spectrum: peaking in the relativistic case, opening angle $1/\gamma$ [Lorentz factor]
- 100 GeV beam: E_{γ} between 50 MeV and 5 GeV emission probability at θ_{μ} =0.3mrad (Q²=0.001): 5 x10⁻⁴
- Bremsstrahlung events in Q²=0.001...0.04 GeV²/c² about 38000

Bremsstrahlung: angular emission spectrum for muon beam energy 100 GeV and scattering angle 14 mrad

Radiative corrections for electron and muon scattering

- for soft bremsstrahlung photon energies ($E_{\gamma}/E_{beam} \sim 0.01$), QED radiative corrections amount to \sim 15-20% for electrons, and to \sim 1.5% for muons
- important contribution to the uncertainty of elastic scattering intensities: *change* of this correction over the kinematic range of interest
- check: impact of exponantiation procedure (stricty valid only for vanishing photon energies): e^- : 2 4%, μ^- : 0.1%
- integrating the radiative tail out to large fraction of beam energy: shifts the correction to smaller values, but only *increases* the uncertainty

Measurements of the Proton Radius: Summary

CODATA'06 (2008)

- A large variety of experiments on both sides, atomic spectroscopy and lepton scattering are ongoing or planned
- Increasing evidence for the "smallradius scenario" $r_p \approx 0.84 \ fm$, in line with established theory expectation
- Bernauer (2010) Pohl (2010) Zhan (2011) CODATA'10 (2012) Antognini (2013) Beyer (2017) Fleurbaey (2018) Sick (2018) Mihovilovič (2019) Alarćon (2019) Bezignov (2019) Xiong (2019) 0.88 0.840.860.9 0.80.82 r_p [fm] courtesy: J. Bernauer,
- Remains the question: did anything go wrong with the earlier electron scattering experiments? If yes, what?
- Promising approach: Scattering of muons with high statistical precision and yet unexplored territory of systematic studies
- Scattering experiments are needed to get the full picture, i.e. the full functional dependence $G_E(Q^2)$ and $G_M(Q^2)$

Proc's FCCP2019

...and what if the proton looks completely different from what we imagine? – *expect the unexpected*

Thank you