Studies of transverse momentum distributions in SIDIS

Harut Avakian (JLab)

IWHSS-2020 November 16-18, 2020

- Introduction
- LUND-MC and data
 - Single hadron
 - Di-hadron
 - Target fragmentation
- Accessing k_T in P_T -distributions of hadrons
 - Phase space
 - Contributions in SIDIS
 - Fitting the P_T -distributions
- CLAS12 multiplicity studies
- From Jlab 12 to EIC simulations
- Conclusions

Semi Inclusive DIS

Extracting the average transverse momenta

and non-perturbative

SIDIS ehX: CLAS12 data vs MC

CLAS12 single hadron note: in review for publication

4

SIDIS ehX,ehhX: CLAS12 data vs MC

ep→e'hX,e'hhX (RGB/RGA CLAS12 Data/MC <u>normalized</u> to the same number of electrons)

- Most of the single hadron sample (from 50-70%) is coming from VM decays
- Pion counts for normalized e'X events are consistent with clas12 LUND MC (VM 70%)
- Simulation describes well both single (e'hX) and di-hadron (e'hhX) counts in CLAS12
- MC data can be used to make conclusions about the source of hadrons

SIDIS ehhX: CLAS12 data vs MC

CLAS12 dihadron production ep \rightarrow ehhX (T.Hayward)

CLAS12 MC, based on the PEPSI(LEPTO) simulation with <u>most parameters "default"</u> is in a good agreement with CLAS12 measurements for all relevant distributions

CLAS12 Studies: Data vs MC

Using PEPSI (LUND) generator rapidity in Breit frame

Boglione et al https://arxiv.org/pdf/1904.12882.pdf

Distributions of protons vs rapidity in good agreement with LUND-MC (LEPTO) in most of the kinematics

CLAS12 Studies: Data vs MC

JETSET

Test: It is not trivial to achieve agreement with data, when using in the single-pion MC with widths of k_T -distributions of pions extracted from the same data

So why the LUND-MCs are so successful in description of hard scattering processes, and SIDIS in the first place?

- The hadronization into different hadrons, in particular Vector Mesons is accounted (full kinematics)
- The correlations between target and current fragments included (mainly lower z)

Exclusive ρ production at large t

Implications

- x-section of measured exclusive process at large t (t_{min})exhibit similar pattern
- $\rho +> \rho^0 \rightarrow Diffractive production suppressed$
- at large t production mechanism most likely is similar to SIDIS, better at lower energies
- Slightly higher rho x-sections indicate the fraction of SIDIS pions from VM > 60%
- consistent with LUND-MC in fraction of pions from rhos

P_{T} of pions from rho decays: LUND string fragmentation

- P_T-dependence of direct hadrons (ρ+/-0, π+/-/0) is wider than the one from decay pions, making studies of k_T-structure using low P_T hadrons <u>challenging</u>
- Understanding of dihadron production is crucial for interpretation of single-hadron SIDIS, in particular, k_T -dependence of PDFs

Important note: VM means VMs from quark fragmentation (not diffractive)

 P_T -distribution of hadrons, for a given value of z, can't be used alone to extract information about the underlying k_T -structure (fraction of VMs relevant)

Accessing the k_T (JLab) 10 ⁵≣₀ 10 Counts 10 308459 423782 164516 306.2 16.70 5 5.071 5 10 10 11.96 12.12 11.01 Fit 0<P_T<0.8 10 -5.011 Slope -3.699 -4.33910 10 10 10 10 10 10 1 2 Ρ_Τ²(ρ) 1 2 P_T²(π+) 0 1 2 P_T²(p) 0 0 5 10 Counts 10 10 308459 423782 164516 10.51 3.772 8.986 Fit 0.9<P_T<1.5 10 10 11.19 11.73 10.90 10 -4.245 -3.812 -3.455 10 10 10 10 10 10 10 1 2 Ρ_T²(ρ) 1 2 P_T²(p) 1 2 Ρ_T²(π+) 0 0 0

Fit to P_{T} gives significantly wider P_{T} for larger P_{T} pions

Accessing the k_T (JLab)

Fit to P_T gives practically the same value for direct pions, similar to one for rhos

Multiplicities from CLAS12

G. Angelini (GW)

H. Avakian, IWHSS-2020

G. Angelini (GW) CLAS12 Multiplicities: z-dependence

Simple leading order seem to work reasonably well for z-dependence of multiplicity

G. Angelini (GW) CLAS12 Multiplicities: P_T-dependence

H. Avakian, IWHSS-2020

CLAS12 Multiplicities: fits to P_T -dependence

Fit procedure gives different values for different ranges in P_T Possible reasons:

- Phase space limitations are function of z
- VM contributions are function of z

Energy conversation and the phase space

Effect of phase space is more significant at lower beam energies, increases with **z**, but could and should be accounted Note: The effect is detector/model independent

CLAS12 Multiplicities: fits to P_T -dependence

G. Angelini (GW)

LUND MC at 12 GeV

Procedure: Use the direct pions, generated with $k_T^2 > = 0.41$ (dashed lines) and try to look at the distributions of pions (solid lines) and extract the $k_T^2 >$

Effect is more significant at small x, large z and at high P_{T}

CLAS12 Multiplicities: the role of high P_T

G. Angelini (GW)

LUND MC at 12 GeV

- Corrections due to phase space (energy needed to produce a hadron with a given z,P_T at given x,Q²) are detector and model independent
- Corrections due to fraction of fragmentation VMs and diffractive VMs are model dependent, but can be extracted from MC (work in progress)

At low z, only the high P_T shows the generated Gaussian transverse momentum distribution.

Origin of non-Gaussian tails

1 hadron 2 Gausses or 1 Gauss 2 hadrons?

- 1) the "real" multiplicity may be lower with most hadrons produced from struck quark with large z, and low z fraction filled by VM decay pions
 - intrinsic k_T may be higher
 - the z-dependence enhanced at large z (may be tuned better to describe single and di-hadron distributions)
 - contributions to pions from target fragmentation may be less relevant
- 2) Combined increase of average transverse momentum and fraction of VMs allows description of non Gaussian tails at large P_T indicating most hadrons come from TMD region

Extractions of k_T -widths ignoring VMs will underestimate the $< k_T^2 >$

EIC (5x50) P_T -dependences for pions

The same π + P_T-dependence may be achieved with different initial transverse momenta P_Ts above 0.6 most sensitive to the intrinsic k_T-distributions H. Avakian, IWHSS-2020

More dynamical input in fits

Ex.: fit the f_1 and g_1/h_1 , as independent functions (ignoring SB) requires bunch of parameters, serves in fitting data, but useless outside of the region of fit So far worked for f1 and g1 using some polynoms, trying to use the information on small and large x limits, and sometimes the info about different xdependences of q+ and q- (BBS,ABDY,...)

More physics information we put in fits more chances that those fits will be useful outside of the kinematical region covered by data used in the fit

Accounting more knowledge in fits will be even more important for TMDs with more degrees of freedom and bigger number of possible parameters

The situation is even more critical for fragmentation functions, as much less is known about p_T -dependences of fragmentation functions, including flavor dependences, even for spin-0 mesons (warning for future attempts to introduce complex parameterizations of FFs)

SUMMARY

- LUND-MC describes well the data in a full accessible energy range (Jlab/COMPASS/EMC) and can be used to test methods to study the k_T-structure
- The CLAS12 data supports predictions from different MCs of a very significant fraction of inclusive pions coming from correlated dihadrons.
- Higher fraction of hadrons with spin-1 vs spin-0 in hadronization will have a number of implications and may require different RC, modeling, and interpretation
- Modeling of spin-orbit correlation will help to understand the dynamics and define the regions where independent fragmentation is most applicable
- <u>Corrections due to phase space (detector, model independent)</u> and fractions of pions from VMs may be critical for interpretation of data and can help to extract the <u>underlying k_T-distributions</u>
 - The interpretation of di-hadron production in SIDIS, as well as interpretation of single-hadron production, the independent fragmentation, in particular, are intimately related to contributions to those samples from correlated semi-inclusive and exclusive di-hadrons in general, and rho mesons, in particular.
 - Target fragmentation may provide important complementary information on the 3D structure

Support slides

Correlated hadron production: Where it matters

- CLAS12 data supports predictions from different MCs of a very significant fraction of inclusive pions coming from correlated dihadrons (large VM fraction supported by latest e+e- studies).
- Most pions in ehX, coming from VM decays will change:
 - account of radiative corrections will require a different set of SFs (exclusive VMs may contribute)
 - modeling of spin effects will be different (opposite sign for Collins predicted)
 - decay pions may dominate low z and low P_{T}
 - interpretation has to account lower P_T/z in case $z=E_h/v$ involves the energy of rho instead of pion
 - The range in P_T for pions will extend to higher values, than predicted from fits to data at P_T <1 GeV
 - number of e+e-/µ+µ- pairs produced in hadronization process (may be relevant for DY,W,...)

CLAS12 Studies: Data vs MC

JLab12: SIDIS and P_T

Direct pions and rhos have the same P_T -distributions carrying direct information about the k_T -structure of the initial quarks

Hadrons produced from decays will have in average much lower P_T for the same z, and studies of k_T -structure will require additional input

EIC (5x50) 2-hadron mass spectra

x 10 ²

Spin-1/spin-0=0.7

- The rho peak is not increasing visually • with increase of the fraction of VMs, as higher number of VMs create comb.bck.
- Most of the background comes from low ٠ momentum particles at large $M\pi\pi$

z_{π+}>0.15

2

2

Accessing the k_T (COMPASS)

Fit to P_T gives significantly wider P_T for larger PT (bigger effect for pions)

H. Avakian, IWHSS-2020

Accessing the k_T (COMPASS)

Fit to P_T gives similar P_T for direct pions and rhos

P_{T} of pions from rho decays: LUND string fragmentation

 P_{T} -dependence of rho is similar to the one for decay pions

Fraction of direct $\pi +$ increases with \textbf{P}_{T}

Kinematical averages (JLab)

CLAS12 Studies

Using PEPSI (LUND) generator rapidity in Breit frame https://arxiv.org/pdf/1904.12882.pdf

Multiliplicity of protons vs rapidity in good agreement with JETSET in most of the kinematics

H. Avakian, IWHSS-2020

Accessing the kT

tooriginal distribution for pions Fit with a single Gauss, starting from some Ptmin Higher Ptmin less the decay fraction, closer to original k_T-width of distribution for pions

Flavor dependence of transverse momentum

Dihadron production

Hadronization effects

 $f_1^q(x,k_T) \otimes D_1^{q \to h}(z,p_T) \; \frac{D_1^{u \to \pi^+}(z,p_T)}{D_1^{u \to K^+}(z,p_T)}$

•Widths of fragmentation functions are flavor dependent. (H. Matevosyan, A. W. Thomas & W. Bentz)

Study of kaon multiplicities in SIDIS is crucial for understanding of spin-orbit effects in hadronization

Invariant mass of pion pairs $M\pi\pi$

Reconstruction efficiencies extracted from LUND-MC with full GEANT4 simulation of CLAS12

In the range 0.7<M $\pi\pi$ <0.9 efficiencies for $\rho 0$ and ρ + comparable

Invariant mass of pion pairs $M\pi\pi$

Multiplicities from data consistent with multiplicities coming from CLAS12 LUND MC

Jefferson Lab

