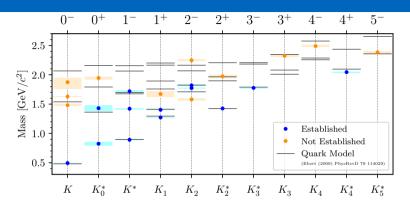
Strange-Meson Spectroscopy at COMPASS and Beyond

Stefan Wallner for the COMPASS Collaboration


Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich

November 16, 2020
XVII International Workshop on Hadron Structure and Spectroscopy

Strange-Meson Spectroscopy

PDG (2019)

- ▶ PDG lists 25 strange mesons
- ▶ 13 established states, 12 need further confirmation
- Missing states with respect to quark-model prediction

Strange-Meson Spectroscopy

K_J^* states

$$P = (-1)^J$$

- ▶ 8 of 11 listed K_J^* states are established
- ▶ Decay to $K\pi$ and other final states
- From precise measurements of
 - $ightharpoonup K\pi$ scattering, e.g. from $K^{\pm}p \to K^{\pm}\pi^+n$
 - ▶ heavy-meson $(J/\psi, D, B, \eta_c)$ and τ decays

K_J states

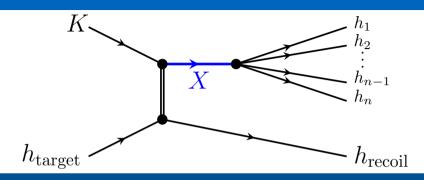
$$P = (-1)^{J+1}$$

- \triangleright Only 5 of 14 listed K_J states are established
- ▶ Cannot decay to $K\pi$ final state
 - Observed in decays to multi-body final states: $K\pi\pi$, $K\phi$, $K\omega$, $\Lambda\bar{p}$
- From measurements of
 - ightharpoonup heavy-meson and au decays
 - various production experiments

Strange-Meson Spectroscopy

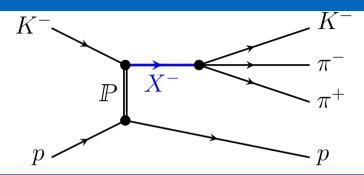
K_J^* states

$$P = (-1)^J$$

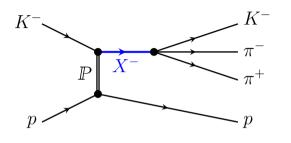

- ▶ 8 of 11 listed K_J^* states are established
- ▶ Decay to $K\pi$ and other final states
- ► From precise measurements of
 - \blacktriangleright $K\pi$ scattering, e.g. from $K^{\pm}p \rightarrow K^{\pm}\pi^{+}n$
 - ▶ heavy-meson $(J/\psi, D, B, \eta_c)$ and τ decays

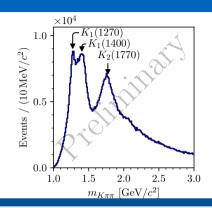
K_J states

$$P = (-1)^{J+1}$$

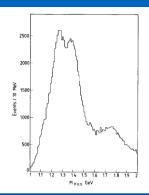

- ightharpoonup Only 5 of 14 listed K_J states are established
- ▶ Cannot decay to $K\pi$ final state
 - Observed in decays to multi-body final states: $K\pi\pi$, $K\phi$, $K\omega$, $\Lambda\bar{p}$
- From measurements of
 - ightharpoonup heavy-meson and au decays
 - various production experiments

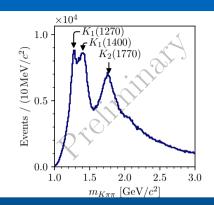
Production Experiments

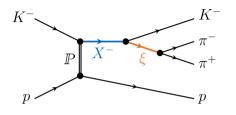



- ▶ Production in scattering of high-energy beam
 - $ightharpoonup K^{\pm}$, γ , $K_{\rm L}^0$
- Strange mesons appear as intermediate states X
- Observed in decays into quasi-stable particles
- $K^-\pi^-\pi^+$ final state produced in diffractive K^- scattering at COMPASS
 - Access to all K_J^* and K_J states (except for $J^P = 0^+$)

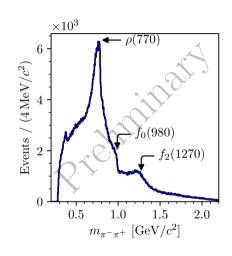
Production Experiments

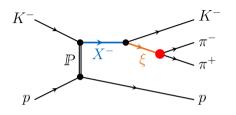



- ▶ Production in scattering of high-energy beam
 - ightharpoonup K^{\pm} , γ , $K_{\rm L}^0$
- ► Strange mesons appear as intermediate states X
- Observed in decays into quasi-stable particles
- $ightharpoonup K^-\pi^-\pi^+$ final state produced in diffractive K^- scattering at COMPASS
 - Access to all K_J^* and K_J states (except for $J^P = 0^+$)

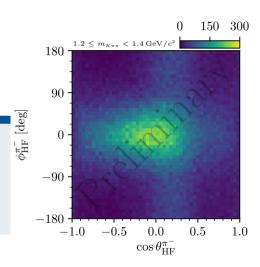


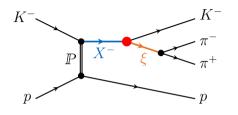
- ► Rich spectrum of overlapping and interfering X⁻
 - ► Dominant well-known states
 - States with lower intensity are "hidden"
- ▶ Largest data set of diffractively produced $K^-\pi^-\pi^+$
 - $ho \approx 720\,000$ exclusive events (cf. ACCMOR 200 000 exclusive events)

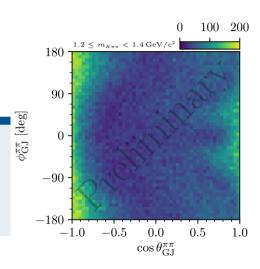


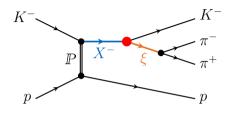


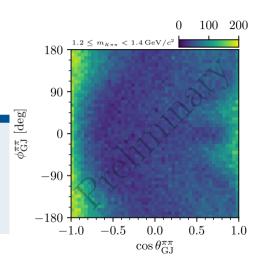
- WA03 (CERN) 200 000 events ACCMOR, NPB **187** (1981)
 - ► Rich spectrum of overlapping and interfering X⁻
 - Dominant well-known states
 - ► States with lower intensity are "hidden"
 - ▶ Largest data set of diffractively produced $K^-\pi^-\pi^+$
 - $ightharpoonup pprox 720\,000$ exclusive events (cf. ACCMOR 200 000 exclusive events)

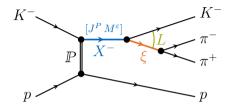



- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- ► Structures in angular distributions of *X*[−] and isobar decays
- ► Characteristic signature for spin and parity of the decaying state

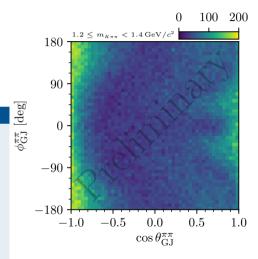


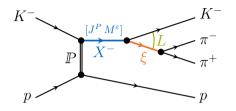

- ► Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X⁻ and isobar decays
- Characteristic signature for spin and parity of the decaying state




- ► Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X⁻ and isobar decays
- Characteristic signature for spin and parity of the decaying state

- Successive 2-body decay via $\pi^-\pi^+$ / $K^-\pi^+$ resonance called isobar
- Structures in angular distributions of X⁻ and isobar decays
- Characteristic signature for spin and parity of the decaying state

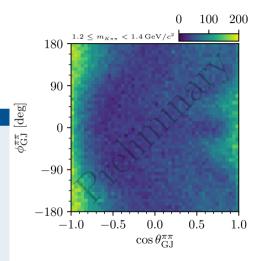




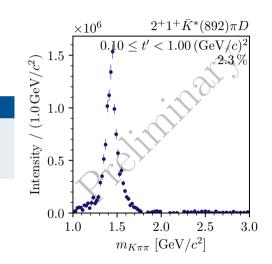
Partial wave

$J^P M^{\varepsilon} \xi b L$

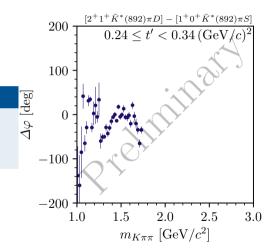
- $ightharpoonup J^P M^{\varepsilon}$: Spin, parity, and spin projection of X^-
- **▶** *ξ*: Isobar
- ▶ b: Bachelor particle. Here: Spectator K⁻
- L: Angular momentum between bachelor and isobar
- ► Partial-wave amplitudes extracted from data in



Partial wave

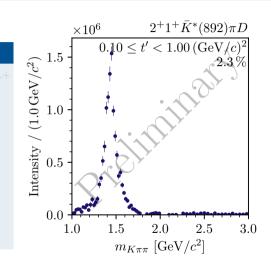

$J^P M^{\varepsilon} \xi b L$

- $ightharpoonup J^P M^{\varepsilon}$: Spin, parity, and spin projection of X^-
- **▶** *ξ*: Isobar
- ▶ b: Bachelor particle. Here: Spectator K⁻
- L: Angular momentum between bachelor and isobar
- ► Partial-wave amplitudes extracted from data in maximum-likelihood fit


$2^+1^+K^*(892)\pi D$

- ▶ Signal in $K_2^*(1430)$ mass region
- ► Clear phase motion in $K_2^*(1430)$ region

- ▶ Signal in $K_2^*(1430)$ mass region
- ▶ Clear phase motion in $K_2^*(1430)$ region
 - ► Characteristic of narrow isolated resonances

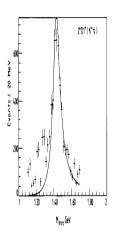


Selected Partial Waves

 $J^{P} = 2^{+}$

$K_2^*(1430)$

- In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- Recent precise measurement from BES III $M = 1/40 \rightarrow K^+K^-\pi^0$
- Various measurements in $K\pi$ scattering $K^{\pm}p \to K^{0}\pi^{\pm}p$ $K^{-}p \to K^{-}\pi^{+}n$
- ▶ PDG lists different parameters for charged and neutral K_2^* (1430)
- ▶ Different cluster of parameters

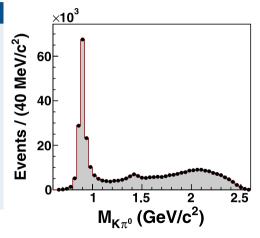


Selected Partial Waves 1P = 2+

$K_2^*(1430)$

- ▶ In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- Recent precise measurement from BES III $M = 1/40 \rightarrow K^+K^-\pi^0$
- ▶ Various measurements in $K\pi$ scattering

 ▶ $K^{\pm}p \to K^{0}\pi^{\pm}p$ ▶ $K^{-}p \to K^{-}\pi^{+}n$
- ▶ PDG lists different parameters for charged and neutral K_2^* (1430)
- ► Different cluster of parameters



$K_2^*(1430)$

- ▶ In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- ► Recent precise measurement from BES III
 - $I/\psi \rightarrow K^+K^-\pi^0$
- ightharpoonup Various measurements in $K\pi$ scattering

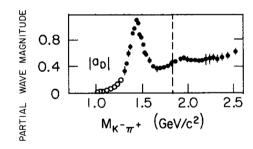
$K^- p \to K_S \pi^- p$ $K^- p \to K^- \pi^+ n$

- PDG lists different parameters for charged and neutral K_2^* (1430)
- ▶ Different cluster of parameters

BESIII, 183 000 events, Phys. Rev. D 100 (2019)

$K_2^*(1430)$

- ▶ In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- ► Recent precise measurement from BES III


$$I/\psi \rightarrow K^+K^-\pi^0$$

ightharpoonup Various measurements in $K\pi$ scattering

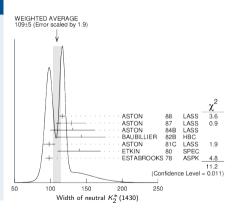
$$ightharpoonup K^{\pm}_{\rm S} p
ightarrow K^{0}_{\rm S} \pi^{\pm} p$$

$$K^-p \rightarrow K^-\pi^+n$$

- ▶ PDG lists different parameters for charged and neutral K_2^* (1430)
- ► Different cluster of parameters

LASS, 151 000 events, Nucl. Phys. B 269 (1988)

Selected Partial Waves 1P = 2+

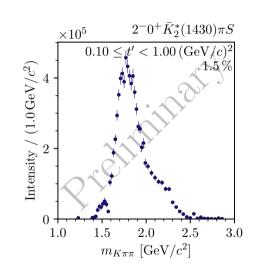

$K_2^*(1430)$

- ▶ In agreement with previous measurement of $K^-\pi^-\pi^+$ final state at WA03
- ► Recent precise measurement from BES III
 - $I/\psi \rightarrow K^+K^-\pi^0$
- ightharpoonup Various measurements in $K\pi$ scattering

$$ightharpoonup K^{\pm}_{S} p
ightarrow K^{0}_{S} \pi^{\pm} p$$

$$K^-p \rightarrow K^-\pi^+n$$

- ▶ PDG lists different parameters for charged and neutral $K_2^*(1430)$
- ▶ Different cluster of parameters

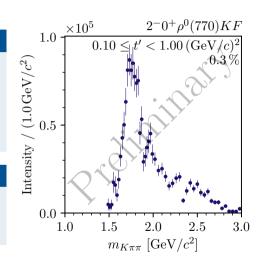

PDG, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

$2^{-}0^{+}K_{2}^{*}(1430)\pi S$

- ► Strongest 2⁻ wave
- ► Two resonances in signal region
 - $ightharpoonup K_2(1770), K_2(1820)$
- ► Bump in high-mass shoulder
 - ► Potential K₂(2250)

$2^-\,0^+\, ho$ (770) K F $\,/\,\,2^-\,0^+\,K^*$ (892) π F

Similar signals also in

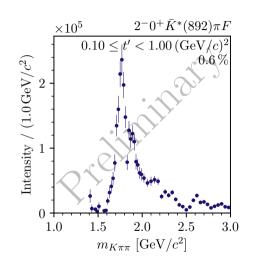


$2^{-}0^{+}K_{2}^{*}(1430)\pi S$

- ► Strongest 2[−] wave
- ► Two resonances in signal region
 - $ightharpoonup K_2(1770), K_2(1820)$
- ► Bump in high-mass shoulder
 - ► Potential K₂(2250)

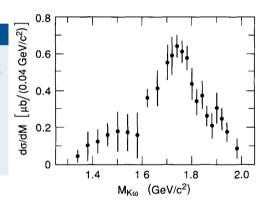
$\overline{(2^-\,0^+\, ho(770)\,K\,F\,\,/\,\,2^-\,0^+\,K^*(892)\,\pi\,F}$

- Similar signals also in
 - ightharpoonup
 ho(770)~K and
 - $K^*(892) \pi \text{ decays}$



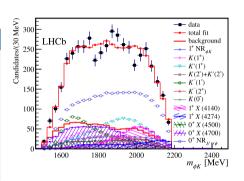
$2^{-}0^{+}K_{2}^{*}(1430)\pi S$

- ► Strongest 2[−] wave
- ► Two resonances in signal region
 - \triangleright $K_2(1770), K_2(1820)$
- ► Bump in high-mass shoulder
 - ► Potential K₂(2250)

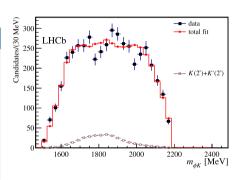

$2^{-}\,0^{+}\, ho(770)\,K\,F\,/\,2^{-}\,0^{+}\,K^{*}(892)\,\pi\,F$

- Similar signals also in
 - ightharpoonup
 ho(770) K and
 - $ightharpoonup K^*(892) \pi \text{ decays}$

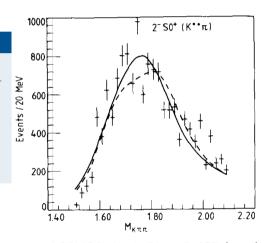
$K_2(1770)$


- \blacktriangleright Observed in $K\omega$ final state at LASS
- ightharpoonup Recent measurement from LHCb in $B^+ o J/\psi \phi K^+$
- Mass and width determined from these two measurements only
- ▶ Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...

LASS, 151 000 events, Nucl. Phys. B 269 (1988)

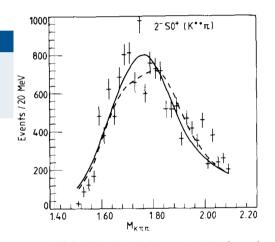

$K_2(1770)$

- \blacktriangleright Observed in $K\omega$ final state at LASS
- ▶ Recent measurement from LHCb in $B^+ \to J/\psi \phi K^+$
- Mass and width determined from these two measurements only
- Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...


$K_2(1770)$

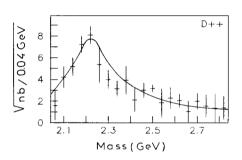
- \blacktriangleright Observed in $K\omega$ final state at LASS
- ▶ Recent measurement from LHCb in $B^+ \to J/\psi \phi K^+$
- Mass and width determined from these two measurements only
- Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...

$K_2(1770)$

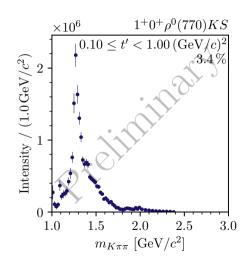

- \blacktriangleright Observed in $K\omega$ final state at LASS
- ▶ Recent measurement from LHCb in $B^+ \to J/\psi \phi K^+$
- Mass and width determined from these two measurements only
- ▶ Further observations from decays to $K2\pi$, $K\phi$, $K\omega$ final states from production experiments at CERN, SLAC, ...

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

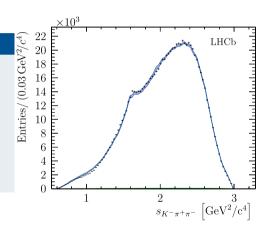
$K_2(1820)$


- Observed only in
 - \blacktriangleright $K\omega$ final state at LASS
 - $\blacktriangleright \phi K^+$ final state at LHCb
 - $ightharpoonup K^-\pi^-\pi^+$ final state at WA03

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

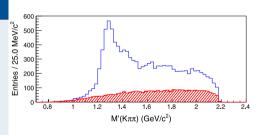

$K_2(2250)$

• Observed mainly in $\Lambda \bar{p}$ final state from production experiments


$1^+ 0^+ \rho(770) KS$

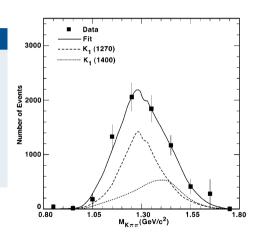
- ▶ 3.4 % of total intensity
- \triangleright Dominated by $K_1(1270)$
- \triangleright Small potential signal from $K_1(1650)$

$K_1(1270) / K_1(1400)$


- Recent measurements in
 - $D^0 \to K^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ from LHCb
 - \triangleright $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - $\tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$ at Cleo II
- ▶ Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes

LHCb, 893 000 events, Eur. Phys. J. C 78 (2018)

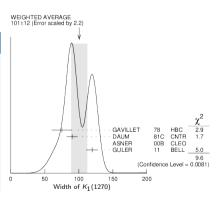
$K_1(1270) / K_1(1400)$


- ► Recent measurements in
 - $ightharpoonup D^0
 ightarrow K^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ from LHCb
 - \triangleright $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - $\tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$ at Cleo II
- ▶ Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes

Belle, 11 000 events, Phys. Rev. D 83 (2011)

$K_1(1270) / K_1(1400)$

- Recent measurements in
 - $D^0 \rightarrow K^{\pm} \pi^{\pm} \pi^{\pm} \pi^{\mp}$ from LHCb
 - \blacktriangleright $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - u $\tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$ at Cleo II
- ▶ Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes



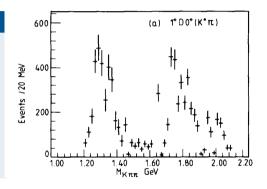
CLEO II, 7 000 events, Phys. Rev. D 62 (2000)

Selected Partial Waves

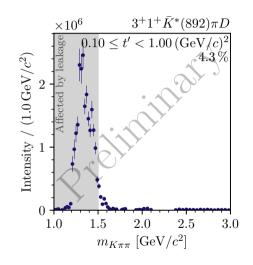
$K_1(1270) / K_1(1400)$

- Recent measurements in
 - $ightharpoonup D^0
 ightarrow K^{\pm}\pi^{\pm}\pi^{\pm}\pi^{\mp}$ from LHCb
 - \triangleright $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ at Belle
 - $ightharpoonup au^-
 ightarrow K^- \pi^+ \pi^-
 u_{\tau}$ at Cleo II
- ▶ Potential bi-modality in the width of the $K_1(1270)$
 - Proposals that $K_1(1270)$ has two-pole structure similar to $\Lambda(1405)$ coupling differently to different decay modes

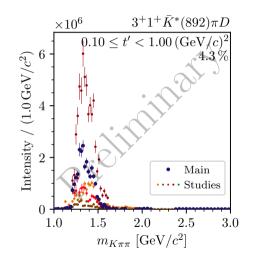
PDG, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

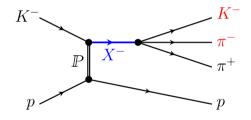

$K_1(1650)$

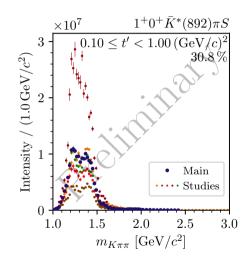
- ightharpoonup Cannot be accessed in D or τ decays
 - $ightharpoonup K_1(1650)$ low-mass tails can contribute
- Observed in
 - $ightharpoonup B^+ o J/\psi \phi K^+$ decays at LHCb
 - ϕK and $K\pi\pi$ final states from production experiments at CERN
- Parameters driven by one measurement
- ► Further confirmation needed


Selected Partial Waves $J^P = 1^+$

$K_1(1650)$


- ightharpoonup Cannot be accessed in D or τ decays
 - $ightharpoonup K_1(1650)$ low-mass tails can contribute
- Observed in
 - $ightharpoonup B^+ o J/\psi \phi K^+$ decays at LHCb
 - ϕK and $K\pi\pi$ final states from production experiments at CERN
- Parameters driven by one measurement
- ► Further confirmation needed

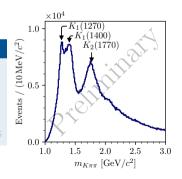

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Sensitive to systematic effects
- Final-state PID does not cover full kinematic range
 Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected


- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Sensitive to systematic effects
- Final-state PID does not cover full kinematic range
 Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Sensitive to systematic effects
- ► Final-state PID does not cover full kinematic range
 - ➡ Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected

- ► Unexpected low-mass enhancement in $3^+ 1^+ K^*(892) \pi D$ wave
- Sensitive to systematic effects
- ► Final-state PID does not cover full kinematic range
 - **⇒** Reduced distinguishability of partial waves
- Only a small sub-set of partial waves affected

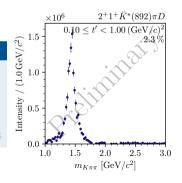
Strange-meson spectroscopy


- ► Many states need further clarification
- ▶ Many measurements performed more than 30 years ago
- lacktriangle Most of the recent measurements from heavy-meson or au decays

- \triangleright World's largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects

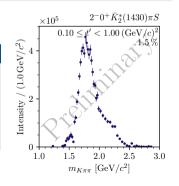
Strange-meson spectroscopy

- Many states need further clarification
- ▶ Many measurements performed more than 30 years ago
- \blacktriangleright Most of the recent measurements from heavy-meson or τ decays


- lacktriangle World's largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects

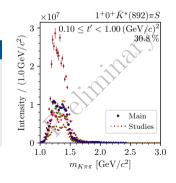
Strange-meson spectroscopy

- Many states need further clarification
- ▶ Many measurements performed more than 30 years ago
- \blacktriangleright Most of the recent measurements from heavy-meson or τ decays


- ▶ World's largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects

Strange-meson spectroscopy

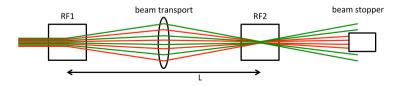
- Many states need further clarification
- ▶ Many measurements performed more than 30 years ago
- \blacktriangleright Most of the recent measurements from heavy-meson or τ decays


- ▶ World's largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- Few signals were identified to be affected by large systematic effects

Strange-meson spectroscopy

- Many states need further clarification
- ▶ Many measurements performed more than 30 years ago
- \blacktriangleright Most of the recent measurements from heavy-meson or τ decays

- ▶ World's largest data set of diffractively produced $K^-\pi^-\pi^+$
- Observation of well-known states
- Potential signals from excited states
- ► Few signals were identified to be affected by large systematic effects



COMPASS++/AMBER

A New QCD Facility at the M2 Beam Line of CERN SPS

Spectroscopy of strange mesons

- Radio-frequency separated high-intensity high-energy kaon beam
 - Series of workshops at CERN
- ► At least ×10 larger data set than collected by COMPASS
- Map out strange-meson spectrum with similar precision as unflavored light-meson spectrum
- Letter of intent: arXiv:1808.00848
- ▶ Proposal for phase-1: CERN-SPSC-2019-022
 - Recommended by SPSC
 - Formation of new collaboration in process

Backup

Outline