THE 3D NUCLEON STRUCTURE

Alessandro Bacchetta

European Research Council

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

3D STRUCTURE IN MOMENTUM SPACE

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

2D STRUCTURE IN LONGITUDINAL MOMENTUM+IMPACT PARAMETER

Moutarde, Sznajder, Wagner, arXiv:1807.07620

TRANSVERSE EXTENSION OF PARTONS IN THE PROTON

arXiv:1802.02739

WHY IS IT INTERESTING TO MAP THE NUCLEON?

 $\mathcal{L}_{\text{QCD}} = \sum \overline{\psi}_q (i \partial \!\!\!/ - g A \!\!\!/ + m) \psi_q - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$ Make predictions Check predictions

UNPOLARIZED PDF MOMENTS AND LATTICE QCD

PDFLattice White Paper, arXiv:1711.07916

Fair agreement, but not perfect

FULL UNPOLARIZED PDF AND LATTICE QCD

Alexandrou, Cichy, Constantinou, Hadjiyiannakou, Jansen, Scapellato, Steffens, arXiv:1902.00587 Joó, Karpie, Orginos, Radyushkin, Richards, Zafeiropoulos, arXiv:1908.09771

WHY IS IT INTERESTING TO MAP THE NUCLEON?

TOOLS USED FOR DRELL-YAN PREDICTIONS

arTeMiDe [https://teorica.fis.ucm.es/artemide/]	ſ		
NangaParbat [https://github.com/vbertone/NangaParbat]	J	TMD	TMD components.
PB-TMD [https://arxiv.org/pdf/1906.00919.pdf]	J		coming from nonperturbative
RadISH [https://arxiv.org/pdf/1705.09127.pdf]	J	PR	Most of them neglect SIDIS and the important effects
ReSolve [https://github.com/fkhorad/reSolve]	J	q1-103.	
DYRes/DYTURBO [https://gitlab.cern.ch/DYdevel/DYTURBO]	J	at-res	predictions for observables at LHC related to TMDs.
CuTe [https://cute.hepforge.org]	J		of tools that make
SCETTIb [https://confluence.desy.de/display/scetlib]	ļ	SCET	

SELECTED RECENT RESULTS AND PERSPECTIVES

UNPOLARIZED TMDS

TMDS IN SEMI-INCLUSIVE DIS

TMD FACTORIZATION

$$\begin{split} \hat{f}_{1}^{q}(x,b_{T};\mu^{2}) &= \int d^{2}\boldsymbol{k}_{\perp}e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}}f_{1}^{q}(x,\boldsymbol{k}_{\perp}^{2};\mu^{2}) \\ & \text{perturbative Sudakov form factor} \\ \hat{f}_{1}^{q}(x,b_{T};\mu^{2}) &= \sum_{i} (C_{qi}\otimes f_{1}^{i})(x,b_{*};\mu_{b})e^{\tilde{S}(b_{*};\mu_{b},\mu)}e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}}\hat{f}_{\mathrm{NP}}^{q}(x,b_{T}) \\ \mu_{b} &= \frac{2e^{-\gamma_{E}}}{b_{*}} \\ & \text{collinear PDF} \\ & \text{matching coefficients} \\ & \text{(perturbative)} \end{split}$$

see, e.g., Rogers, Aybat, PRD 83 (11), Collins, "Foundations of Perturbative QCD" (11) Bozzi, Catani, De Florian, Grazzini, NPB737 (06) Scimemi, Vladimirov, arXiv:1912.06532 16

RECENT TMD FITS OF UNPOLARIZED DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ²/N _{points}
Pavia 2017 arXiv:1703.10157	NLL	>	~	>	~	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	*	×	>	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	*	×	~	~	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	~	~	~	~	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	✓	~	353	1.02

.

HIGH LEVEL OF ACCURACY

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

Nice convergence of perturbative series

WIDE x-Q² COVERAGE

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

Scimemi, Vladimirov, arXiv:1912.06532

AVAILABLE TOOLS: NANGA PARBAT

https://github.com/vbertone/NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

AVAILABLE TOOLS: ARTEMIDE

https://teorica.fis.ucm.es/artemide/

AVAILABLE TOOLS: TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

TMD plotter — Density as a function of kt							
Home	TMD PDF	Luminosity	New PDFs	Publications	HEP Links		
Parameters X-axis: min = 0.1 Y-axis: min = 0.00 ratio: min = 0.4	max = 2 001 max = 2.5 max = 1.6	GeV ● log ◯ lin ◯ log ● lin ◯ log ● lin	down, Pl (11 4 X) X X 2 1.5	B-NLO-HERAI+II-2018-set1, x = 0	.1, μ = 2 GeV		
Curves 1. down ▼ 1 µ = 2	PB-NLO-HERA	AI+II-2018-set1▼ ×	0.5		1 K ^f [GeV]		

Soon more TMD parametrisation will be available

Analysis of revised SIDIS data PROBLEMS WITH SIDIS NORMACIVERASIN [Phys.Rev. D97 (2018) no.3, 032006]

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

NLL H = 1

NLL'
$$H = 1 + \frac{C_F}{\pi} \left(-4 + \frac{\pi^2}{12} \right) \alpha_S \approx 1 - 0.4$$

Going to NLL' or NNLL the situation dramatically worsens!

PROBLEMS WITH SIDIS NORMALIZATION

talk by O. Gonzalez at DIS2019

$\mathcal{O}(\alpha_s)$

Torino's group also confirmed that large normalisation factors have to be introduced to describe COMPASS data

THE SCIMEMI-VLADIMIROV 19 EXTRACTION

Scimemi, Vladimirov, arXiv:1912.06532

FLAVOR DEPENDENCE OF TMDS

Signori, Bacchetta, Radici, Schnell JHEP 1311 (13)

IMPORTANCE OF COMPASS DATA

A. Moretti's talk at ICNFP 2020

https://indico.cern.ch/event/868045/contributions/3996129/

Proton data (in addition to published deuteron data) will be extremely important to pin down flavor dependence of TMDs

IMPACT ON W MASS DETERMINATION

ATLAS Collab. arXiv:1701.07240

$$m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$$

= 80370 ± 19 MeV,

 $m_{W^+} - m_{W^-} = -29 \pm 28$ MeV.

"Z-equivalent" sets. The former table lists the values of "Z-equivalent" sets. The former table lists the values of the participation of the former table lists the values of flavors $a = u_v, a_v, u_s, a_s, s = c = b = g$. The latter table shows the corresponding shifts induced in $M_{Wdicl, Ritzmann, Signori, arXiv:1807.02101}$ plying our analysis to the $m_T, p_{T\ell}$ distributions for the Wty sochthe Uticipus dolation at the latter of the latter of the social states and check

<u> </u>									
Set	u_v	d_v	Setts i	$l_v d_s$ a	$v \ $	s	d_s	S	
1	0.34	0.26	0.46	3 450.	26 32 /	46	Daig	DV3 21	medium, large
2	0.34	0.46	2.56	3 430.	466,501.	56	ിക്മ	0// 8,1	arge, narrow
3	0.55	0.34	6 .3 9	5556.	334,300	83	la õğe	EQ. B(D	rrow, large
4	0.53	0.49	Ø.3Ø	5 32 <u>0</u> .	49.52	87	a2ge	EQ.500	edium, narrow
5	0.42	0.38	[5.29]	4 25₽.	38.29.2	29	med	i0.127,	narrow, large
						1			

TABLE I: Values of the Add parameter in Eq Not taking into account the flavors $a = u_v, d_v, \overline{u_{\text{Set}}}, \overline{m_T} \stackrel{r}{=} c_T \stackrel{r}{=} b_T \overline{\overline{m}}_T g. p_T \ell$ its are flavour dependence of TMDs -2 3 -1 1 0 can lead to errors in the As expected, the shifts induced by the a 3 -1 9 -2 -4 determination of the W mass -2 0 0 4 -4 -3 -1 5 4

¹ Our analysis is performed on 30 bins in the interval [60, 90] GeV for m_T and on 20 bins in the interval [30, 50] GeV for $p_{T\ell}$.

GLUON TMDS

 $rac{\mathrm{d}\sigma}{\mathrm{d}q_T} \left[\mathrm{fb/GeV}
ight]$

Higgs production

Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov, arXiv:1907.03780

Quarkonium-pair production

Scarpa, Boer, Echevarria, Lansberg, Pisano, Schlegel, arXiv:1909.05769

see talk by D. Boer

POLARIZED TMDS

see also M. Radici's talk

TMD TABLE

TMDs in black survive integration over transverse momentum TMDs in red are time-reversal odd Mulders-Tangerman, NPB 461 (96)

Boer-Mulders, PRD 57 (98)

On top of these, there are twist-3 functions

TENSOR CHARGE FROM TRANSVERSITY

Tensor charge

$$\delta q \equiv g_T^q = \int_0^1 dx \; \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato, arXiv:2002.08384

TRANSVERSITIES

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato, arXiv:2002.08384

see M. Radici's talk

SIVERS FUNCTION

Without RHIC W & Z data

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

Echevarria, Kang, Terry, arXiv:2009.10710

see J. Terry's talk

SIVERS SHIFT IN LATTICE QCD

Pioneering lattice studies are in agreement with phenomenology

PROBLEMS WITH DY DATA?

SIVERS FUNCTION

Without RHIC W & Z data

With RHIC W & Z data

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 Echevarria, Kang, Terry, arXiv:2009.10710

see J. Terry's talk

WEIGHTED ASYMMETRIES

Unweighted $A_{\text{Siv}}(x,z,P_T) = \frac{\sum_{q} e_q^2 x \mathscr{C} \left[\frac{P_T \cdot k_T}{MP_T} f_{1T}^{\perp q}(x,k_T^2) D_1^q(z,p_T^2) \right]}{\sum_{q} e_q^2 x \mathscr{C} \left[f_1^q(x,k_T^2) D_1^q(z,p_T^2) \right]}$ Convolution Weighted $A_{\text{Siv}}^{w}(x,z) = 2 \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) D_{1}^{q}(z)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x) D_{1}^{q}(z)}$

product

JET ASYMMETRIES (AT EIC)

Arratia, Kang, Prokudin, Ringer, arXiv:2007.077281

see also workshop next week (<u>https://indico.bnl.gov/event/8066/</u>)

BOER-MULDERS FUNCTION

'OMP.

A. Moretti's talk at ICNFP 2020 https://indico.cern.ch/event/868045/contributions/3996129/

Cos2φ asymmetries sensitive to Boer–Mulders function.

Not much phenomenology in the last years about this signal, but it will come

THE FUTURE

"NEW" DATA FROM HERMES!

Even if HERMES was closed 10 years ago, the collaboration is still producing results

NEW DATA FROM COMPASS

COMPASS is in "full swing" mode CONGRATS!

FIRST JLAB PRELIMINARY DATA

SOLID @ JLAB

https://hallaweb.jlab.org/12GeV/SoLID/

LHC FIXED TARGET, INCLUDING POLARISATION

arXiv:1901.08002

NUCLOTRON-BASED ION COLLIDER FACILITY

https://nica.jinr.ru/

THE ELECTRON-ION COLLIDER

see M. Contalbrigo's talk

FORESEEN EIC IMPACT

Sensitivity coefficients: measure of the correlation between fit parameters and measurable quantities at EIC

- Unpolarized TMDs: full-fledged TMD extractions up to NN³LL accuracy are coming out and being constantly improved
- ► Simple Gaussians and no x-dependence have to be abandoned
- ► Flavor dependence should come next
- There are still several contradictory results, especially for polarized TMDs
- ► New ideas keep coming
- ► Many results are expected to come in the next years